lecture 13 part ii modularity of elliptic curves and
play

Lecture 13, part II: Modularity of elliptic curves and Fermats Last - PowerPoint PPT Presentation

Lecture 13, part II: Modularity of elliptic curves and Fermats Last Theorem (an overview) June 9, 2020 1 / 10 Local zeta functions X algebraic variety { F p , N m : # X p F p m q m 1 , 2 , . . . 8 T m Z X p T q : exp


  1. Lecture 13, part II: Modularity of elliptic curves and Fermat’s Last Theorem (an overview) June 9, 2020 1 / 10

  2. Local zeta functions X algebraic variety { F p , N m : “ # X p F p m q m “ 1 , 2 , . . . ˜ 8 ¸ T m ÿ Z X p T q : “ exp “ 1 ` N 1 T ` . . . P Q rr T ss N m m m “ 1 Theorem (Dwork). Z X p T q P Q p T q 4 a 3 ` 27 b 2 ‰ 0 Example: a , b P F p , E a , b : Y 2 Z “ X 3 ` aXZ 2 ` bZ 3 p m : y 2 “ x 3 ` ax ` b u N m “ # E a , b p F p m q “ 1 ` # tp x , y q P F 2 1 ´ λ T ` pT 2 Z E a , b p T q “ p 1 ´ T qp 1 ´ pT q “ 1 ` p 1 ` p ´ λ q T ` . . . λ “ p ` 1 ´ N 1 determines all N m : N m : “ 1 ` p m ´ N m N m ` 1 “ λ ˜ ˜ N m ´ p ˜ where ˜ N m ´ 1 , 2 / 10

  3. Global (Hasse–Weil) zeta functions ź Z X { F p p p ´ s q X algebraic variety { Z ζ X p s q : “ ù p prime Example: X “ one point T m ÿ 1 Z X { F p p T q “ exp p m q “ 1 ´ T m ě 1 1 ´ ¯ ź 1 ź 1 ` 1 1 ÿ ζ X p s q “ 1 ´ p ´ s “ p s ` p 2 s ` . . . “ n s p prime p prime n ě 1 Conjecture. ζ X p s q can be analytically continued to a meromorphic function of s in the whole C This is known only for very special classes of varieties. 3 / 10

  4. Hasse–Weil L-functions of elliptic curves E : Y 2 Z “ X 3 ` aXZ 2 ` bZ 3 a , b P Z ∆ “ ´ 4 a 3 ´ 27 b 2 ‰ 0 p ∤ ∆ : good reduction 1 ´ λ p T ` pT 2 Z E { F p p T q “ p 1 ´ T qp 1 ´ pT q , λ p “ p “ 1 ´ # E p F p q p | ∆ : bad reduction 1 1 ` T 1 Z E { F p p T q “ p 1 ´ T qp 1 ´ pT q or p 1 ´ T qp 1 ´ pT q or p 1 ´ pT q resp. additive / non-split / split multiplicative ζ E p s q “ ζ p s q ζ p s ´ 1 q 1 ź ź , L E p s q “ 1 ´ λ p p ´ s ` p 1 ´ 2 s ˆ ... L E p s q p ∤ ∆ p | ∆ Proposition. L E p s q is convergent for Re p s q ą 3 2 . 4 / 10

  5. Compare: L-series of Hecke eigenforms n ě 1 λ n q n P S k , a normalized Hecke eigenform Recall: f “ ř λ n 1 ÿ ź L p f , s q “ n s “ 1 ´ λ p p ´ s ` p k ´ 2 s ´ 1 n ě 1 p prime (see Lecture 13, Proposition 5). For modular forms of higher level f P S k p Γ 0 p N qq the terms with p | N in the Euler product have different shape (there is an action of Hecke operators T n with n ∤ N ). In 1950’s Y. Taniyama notices similiarity of the above (with k “ 2) and the Hasse–Weil L-functions of elliptic curves: 1 ź ź L E p s q “ 1 ´ λ p p ´ s ` p 1 ´ 2 s ˆ ... p ∤ ∆ p | ∆ Definition. E is modular if there is N ą 1 and a normalized Hecke eigenform f P S 2 p Γ 0 p N qq such that L E p s q “ L p f , s q . 5 / 10

  6. Eichler–Shimura Theorem (1960’s) Theorem. Let N ą 1 and f P S 2 p Γ 0 p N qq be a normalized Hecke eigenform with integral Fourier coefficients. Then there exists E { Z such that L E p s q “ L p f , s q . n “ 1 λ n q n “ ř 8 Sketch of proof. f p z q “ ř 8 n “ 1 λ n e 2 π inz 8 d φ p z q λ n ÿ n e 2 π inz φ p z q : “ “ 2 π i f p z q dz n “ 1 ñ d ´ ¯ f p γ z q dz p φ p γ z q ´ φ p z qq “ 2 π i p cz ` d q 2 ´ f p z q “ 0 φ p γ z q ´ φ p z q ” C p γ q P C Λ : “ t C p γ q : γ P Γ 0 p N qu Ă C lattice φ ñ φ : H Ñ C Γ 0 p N q z H Ñ C { Λ “ : E ù Difficult part: E is defined over Q . There exist Γ 0 p N q -invariant functions x p z q , y p z q with Fourier coefficients in Q satisfying y p z q 2 “ x p z q 3 ` ax p z q ` b and dx p z q 2 y p z q “ 2 π i f p z q dz . 6 / 10

  7. Is the converse true? Yes! (1990’s) E elliptic curve / Q ù minimal Weierstrass equation { Z (minimzing | ∆ | ) p | ∆ min p e p , Definition. Conductor N “ N p E q “ ś e p “ 1 when E has multiplicative reduction at p e p “ 2 when E has additive reduction and p ‰ 2 , 3 p 2 ď e 2 ď 8, 2 ď e 3 ď 5 are special) Theorem (Wiles–Taylor, Breuil–Conrad–Diamond–Taylor) Let E { Q be an elliptic curve of conductor N . Then L E p s q “ L p f , s q for a Hecke eigenform f P S 2 p Γ 0 p N qq . 7 / 10

  8. Example E : y 2 ´ y “ x 3 ´ x 2 N “ 11 p y “ 216 Y ´ 108 , x “ 36 X ´ 12 Y 2 “ X 3 ´ 432 X ` 8208 , ∆ “ ´ 2 8 ¨ 3 12 ¨ 11 q y 0 1 x 0 1 p “ 2 y 2 ´ y x 3 ´ x 0 0 0 0 # tp x , y q P F 2 : y 2 ´ y “ x 3 ´ x u “ 4 λ 2 “ 2 ´ 4 “ ´ 2 y 0 1 2 x 0 1 2 p “ 3 y 2 ´ y x 3 ´ x 0 0 2 0 0 1 # tp x , y q P F 3 : y 2 ´ y “ x 3 ´ x u “ 4 λ 3 “ 3 ´ 4 “ ´ 1 p “ 5 λ 5 “ 5 ´ 4 “ 1 1 1 1 L E p s q “ 1 ` 2 ¨ 2 ´ s ` 2 ¨ 2 ´ 2 s ¨ 1 ` 3 ´ s ` 3 ¨ 3 ´ 2 s ¨ 1 ´ 5 ´ s ` 5 ¨ 5 ´ 2 s ¨ . . . 1 s ´ 2 1 2 s ´ 1 3 s ` 2 4 s ` 1 “ 5 s ` . . . 8 / 10

  9. Example ( N “ 11) E : y 2 ´ y “ x 3 ´ x 2 1 1 1 L E p s q “ 1 ` 2 ¨ 2 ´ s ` 2 ¨ 2 ´ 2 s ¨ 1 ` 3 ´ s ` 3 ¨ 3 ´ 2 s ¨ 1 ´ 5 ´ s ` 5 ¨ 5 ´ 2 s ¨ . . . 1 s ´ 2 1 2 s ´ 1 3 s ` 2 4 s ` 1 “ 5 s ` . . . 8 p 1 ´ q n q 2 p 1 ´ q 11 n q 2 “ q ´ 2 q 2 ´ q 3 ` 2 q 4 ` q 5 ` . . . ź f p z q “ q n “ 1 P S 2 p Γ 0 p 11 qq dim S 2 p Γ 0 p 11 qq “ 1 “ genus of X p Γ 0 p 11 qq “ : X 0 p 11 q X 0 p 11 q – E 9 / 10

  10. Fermat’s Last Theorem For p ą 2 equation A p ` B p “ C p has no solutions p A , B , C q P Z 3 with A ¨ B ¨ C ‰ 0. Y. Hellegouarch (1970’s), G. Frey (1980’s) ù E : y 2 “ x p x ´ A p qp x ` B p q ∆ “ A 2 p B 2 p C 2 p ‰ 0 1985: J.-P. Serre (almost) shows that Taniyama–Shimura–Weil (modularity) conjecture implies FLT 1986: K. Ribet fills the missing part in Serre’s proof ( ε -conjecture) one of A , B , C is even ñ 2 | N suppose E is modular, f P S 2 p Γ 0 p N qq Ribet’s descent: f ù g P S 2 p Γ 0 p 2 qq , f ” g mod p but S 2 p Γ 0 p 2 qq “ t 0 u , a contradiction 10 / 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend