laplacian approximation on graphs
play

Laplacian approximation on graphs applied to signal and image - PowerPoint PPT Presentation

Laplacian approximation on graphs applied to signal and image restoration by Ph.D. Davide Bianchi Universit` a degli Studi dellInsubria Dip. di Scienze e Alta Tecnologia Como, 16 th of July 2018 1 of 30 Our model problem y = x +


  1. Laplacian approximation on graphs applied to signal and image restoration by Ph.D. Davide Bianchi Universit` a degli Studi dell’Insubria Dip. di Scienze e Alta Tecnologia Como, 16 th of July 2018 1 of 30

  2. Our model problem y δ = x ∗ + K noise • K represents the blur and it is severely ill-conditioned (compact integral operator of the first kind); • y δ are known measured data (blurred and noisy image); • � noise � ≤ δ . 2 of 30

  3. Let’s reformulate the problem x ∈ R n � K x − y � 2 2 + α � x � 2 • Tikhonov: argmin 2 3 of 30

  4. Let’s reformulate the problem x ∈ R n � K x − y � 2 2 + α � x � 2 • Tikhonov: argmin 2 x ∈ R n � K x − y � 2 2 + α � L x � 2 • Generalized Tikhonov: argmin 2 . L is semi-positive definite and ker( L ) ∩ ker( K ) = � 0 . ker( L ) should ‘ approximate the features ’of x † 3 of 30

  5. Laplacian - Finite Difference approximation Poisson (Sturm-Liouville) problem on [0 , 1] :  − ∆ x ( t ) = f ( t ) t ∈ (0 , 1) ,   α 1 x (0) + β 1 x ′ (0) = γ 1 , α 2 x (1) + β 2 x ′ (1) = γ 2 .   If we consider Dirichlet homogeneous boundary conditions ( x (0) = x (1) = 0 ) and 3-point stencil FD approximation: − ∆ x ( t ) ≈ − x ( t − h ) + 2 x ( t ) − x ( t + h ) , h 2 = n − 2 , h 2   2 − 1 0 · · · − 1 2 − 1 · · ·   ker( L ) = � − L = 0 .   ... ... ...     0 − 1 2 4 of 30

  6. Laplacian - Finite Difference approximation · · · If we consider Neumann homogeneous boundary conditions ( x ′ (0) = x ′ (1) = 0 ) and 3-point stencil FD approximation: − ∆ x ( t ) ≈ − x ( t − h ) + 2 x ( t ) − x ( t + h ) , h 2 = n − 2 , h 2   1 − 1 0 · · · − 1 2 − 1 · · ·   ker( L ) = Span { � − L = 1 } .   ... ... ...     0 − 1 1 5 of 30

  7. An easy 1 d example of oversmoothing - part 2 Blur taken from Heat ( n, κ ) in Regtools , n = 100 , κ = 1 and 2% noise . True solution: � 0 if 0 ≤ t ≤ 0 . 5 , x † : [0 , 1] → R x † ( t ) = s.t. 1 if 0 . 5 < t ≤ 1 . 1.2 1 True solution Tik + L dirichlet 0.8 Tik + L neumann blurred&noisy signal 0.6 0.4 0.2 0 -0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 6 of 30

  8. Graph Laplacian • An image/signal x can be represented by a weighted undirected graph G = ( V, E, w ) : ◦ the nodes v i ∈ V are the pixels of the image/signal and x i ≥ 0 is the color intensity of x at v i . ◦ an edge e i,j ∈ E ⊆ V × V exists if the pixels v i and v j are connected, i.e., v i ∼ v j . ◦ w : E → R is a similarity (positive) weight function, w ( e i,j ) = w i,j . • The graph Laplacian is defined as � w i,j > 0 if v j ∼ v i , � − ∆ ( n ) w x i = w i,j ( x i − x j ) , w i,j = 0 otherwise. v j ∼ v i 7 of 30

  9. Graph Laplacian - Example Example . In the 1 d case, if we define � 1 if v i ∼ v j , v i ∼ v j iff i = j + 1 or i = j − 1 , w i,j = 0 otherwise , then it holds   1 − 1 0 · · · − 1 2 − 1 · · ·   − ∆ ( n ) = L ( n ) =  .   ... ... ... w w    0 − 1 1 8 of 30

  10. Question Why should the red points be connected? 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 9 of 30

  11. Answer They should not, indeed 1.2 1 true Tik + graph 0.8 0.6 0.4 0.2 0 -0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 � � L ( n/ 2) 0 L ( n ) w = w L ( n/ 2) 0 w 10 of 30

  12. Problems • Detection of the discontinuity points. 11 of 30

  13. Problems • Detection of the discontinuity points. ◦ pre-denoising + first derivatives? 11 of 30

  14. Problems • Detection of the discontinuity points. ◦ pre-denoising + first derivatives? • Choice of the weights w i,j . Indeed, for example another common choice of the weights is:  � vi − vj � e − if � v i − v j � ≤ δ/ 2 ,  2 σ 2 w i,j = 0 otherwise ,  11 of 30

  15. Problems • Detection of the discontinuity points. ◦ pre-denoising + first derivatives? • Choice of the weights w i,j . Indeed, for example another common choice of the weights is:  � vi − vj � e − if � v i − v j � ≤ δ/ 2 ,  2 σ 2 w i,j = 0 otherwise ,  ◦ finding the best weights that can approximate the Euclidean Laplacian. 11 of 30

  16. Approximating the continuous Laplacian by graphs   1 − 1 0 · · · − 1 2 − 1 · · · � ( j − 1) π � �   λ j ( L ( n ) − L ( n ) =  ⇒ w ) = 2 sin   ... ... ... w   n  0 − 1 1 12 of 30

  17. What does happen when we refine the grid? 13 of 30

  18. FD approximation - 1/3 We have already highlighted that Finite Difference 3-point stencil ⇐ ⇒ graph-Laplacian Can we argue the same relationship if we use a wider stencil, i.e., if we ”connect” more points? 14 of 30

  19. FD approximation - 2/3 Let us use a 5-point stencil. − ∆ x ( t ) ≈ x ( t − 2 h ) − 16 x ( t − h ) + 30 x ( t ) − 16 x ( t + h ) + x ( t − 2 h ) , 12 h 2 then 15 − 16 1   0 · · · 12 12 12   − 16 31 − 16 1   0 · · ·   12 12 12 12   ... ... ... ... − L ( n ) = − L ( n )   = . w w     1 − 16 30 − 16 1   · · · · · ·   12 12 12 12 12    ... ...  15 of 30

  20. FD approximation 3/3 We have seen that negative weights appear. Does it make sense? • Does it approximate better the continuous Laplacian? Yes. • Is it still a graph-Laplacian? Yes. • Does it improve the reconstruction of our signal/image? Yes. 16 of 30

  21. Spectral approximation 17 of 30

  22. graph-Laplacian - distributional point of view − x ′′ ( t 0 ) = � x ′′ ( t ) , δ t 0 ( t ) � � + ∞ x ′′ ( t )sin(( t − t 0 ) πǫ − 1 ) = − lim dµ ( t ) π ( t − t 0 ) ǫ → 0 −∞ � + ∞ � ′′ � sin(( t − t 0 ) πǫ − 1 ) = − lim x ( t ) dµ ( t ) π ( t − t 0 ) ǫ → 0 −∞ ≈ − ( α − k x ( t 0 − kh ) + · · · + α 0 x ( t 0 ) + · · · + α k x ( t 0 − kh )) , where � ′′ � sin(( t − t 0 ) πǫ − 1 ) α j = µ ( I j ) · . π ( t − t 0 ) | t = t 0 + jh [ α − k · · · α − 1 α 0 α 1 · · · α k ] is our stencil for the Toeplitz. 18 of 30

  23. Signed measures - 1/2 � ′′ � sin(( t − t 0 ) πǫ − 1 ) α j = µ ( I j ) · , π ( t − t 0 ) | t = t 0 + jh  µ ( I j ) > 0 always   � ′′ � sin(( t − t 0 ) πǫ − 1 ) changes sign .  π ( t − t 0 )  | t = t 0 + jh Is it so dramatic that the sequence α j change signes? Remark The Lebesgue measure dµ ( · ) on [0 , 1] can be weakly approximated by a sequence of signed measures: n sin(( t − t k ) πn ) n →∞ n − 1 � dµ ( · ) = lim dµ ( · ) π ( t − t k ) k =1 19 of 30

  24. Signed measures - 2/2 Fact: the spectrum of the graph-Laplacian that arises from FD schemes with increasing connected points, converges to the spectrum of the continuous Laplacian operator. The stencil converges to the Fourier coefficients of f ( θ ) = θ 2 : π 2 � − 1 1 1 − 1 � · · · − 2 − 2 4 · · · 4 2 3 2 20 of 30

  25. The ’regularization parameter’ is the underlying geometry graph-Laplacian with 10 points connection and 2 connected components. No tuning of the regularization parameter α 21 of 30

  26. Detection of the point of discontinuity 22 of 30

  27. Example - deriv2 ( n, 3) , 2% noise  0 0 · · · · · · 0  π 2 / 3 − 2 − 2 1 / 2 · · · 0 � �   L ( n/ 2) 0   ... ... ... ... L ( n ) w L ( n/ 2) = =   w w L ( n/ 2) 0   w π 2 / 3   . . . 1 / 2 − 2 − 2 1 / 2   0 0 · · · · · · 0 0 ker( L ( n/ 2) ) = Span { � 1 ,� t } w 23 of 30

  28. 2D case - 5 point FD stencil example  0 . 0833 0 0 . 0833 0 0 . 0833  0 − 1 . 3333 − 1 . 3333 − 1 . 3333 0     0 . 0833 − 1 . 3333 10 − 1 . 3333 0 . 0833     0 − 1 . 3333 − 1 . 3333 − 1 . 3333 0   0 . 0833 0 0 . 0833 0 0 . 0833 24 of 30

  29. 2D example - denosing 1/2 25 of 30

  30. 2D example - denoising 2/2 26 of 30

  31. 2D example - Gaussian blur 27 of 30

  32. Edge detection - 1/2 28 of 30

  33. Edge detection - 2/2 29 of 30

  34. Some references • Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and Vandergheynst, P., The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , IEEE Signal Processing Magazine, 30(3), 83-98 (2013). • Faber, X. W. C., Spectral convergence of the discrete Laplacian on models of a metrized graph , New York J. Math, 12, 97-121 (2016). • Bianchi, D., and Donatelli, M., On generalized iterated Tikhonov regularization with operator-dependent seminorms , Electronic Transactions on Numerical Analysis, 47, 73-99 (2017). • Gerth, D., Klann, E., Ramlau, R., and Reichel, L., On fractional Tikhonov regularization. Journal of Inverse and Ill-posed Problems , 23(6), 611-625 (2008). • Bianchi, D., and Donatelli, M., Fractional-Tikhonov regularization on graphs for image restoration , preprint. 30 of 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend