keymaera a hybrid theorem prover for hybrid systems
play

KeYmaera: A Hybrid Theorem Prover for Hybrid Systems Andr e - PowerPoint PPT Presentation

KeYmaera: A Hybrid Theorem Prover for Hybrid Systems Andr e Platzer Jan-David Quesel University of Oldenburg, Department of Computing Science, Germany International Joint Conference on Automated Reasoning, Sydney 2008 Andr e Platzer,


  1. KeYmaera: A Hybrid Theorem Prover for Hybrid Systems Andr´ e Platzer Jan-David Quesel University of Oldenburg, Department of Computing Science, Germany International Joint Conference on Automated Reasoning, Sydney 2008 Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 1 / 11

  2. Motivation KeYmaera: Verification tool for hybrid systems Hybrid System Continuous evolutions (differential equations) Discrete jumps (control decisions) z v 6 a 3.0 2 5 2.5 1 4 2.0 3 1.5 4 t 1 2 3 1.0 2 � 1 1 0.5 4 t 4 t � 2 1 2 3 1 2 3 Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 2 / 11

  3. Differential Dynamic Logic (d L ) v z m Example − → [ � � ]( � �� � ) � �� � �� Precondition Operational model Property Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 3 / 11

  4. Differential Dynamic Logic (d L ) v z m Example v 2 ≤ 2 b ( m − z ) − → [ � � ]( z ≤ m � �� � ) � �� � �� Precondition Operational model Property Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 3 / 11

  5. Differential Dynamic Logic (d L ) v z m Example v 2 ≤ 2 b ( m − z ) z ′ = v , v ′ = a − → [ � ]( z ≤ m � �� � ) � �� � � �� Precondition Operational model Property Continuous evolution: differential equation Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 3 / 11

  6. Differential Dynamic Logic (d L ) v z m Example v 2 ≤ 2 b ( m − z ) z ′ = v , v ′ = a − → [ a := ∗ ; � ]( z ≤ m � �� � ) � �� � � �� Precondition Operational model Property Random assignment Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 3 / 11

  7. Differential Dynamic Logic (d L ) v z m Example v 2 ≤ 2 b ( m − z ) [ a := ∗ ; ? a ≤ − b ; z ′ = v , v ′ = a − → � ]( z ≤ m � �� � ) � �� � � �� Precondition Operational model Property Test Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 3 / 11

  8. Syntax of Differential Dynamic Logic d L Formulas φ ::= θ 1 ∼ θ 2 | ¬ φ | φ ∧ ψ | ∀ x φ | ∃ x φ | [ α ] φ | � α � φ Hybrid Program | Effect α ; β sequential composition α ∪ β nondeterministic choice α ∗ nondeterministic repetition x := θ discrete assignment (jump) x := ∗ nondeterministic assignment � � x ′ 1 = θ 1 , . . . , x ′ n = θ n , F continuous evolution of x i ? F check if formula F holds A. Platzer. Differential Dynamic Logic for Hybrid Systems. Journal of Automated Reasoning, 41(2), 2008, to appear. Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 4 / 11

  9. KeYmaera Architecture Quantifier eliminiation KeYmaera Prover Solvers Input File Strategy Mathematica Rule QEPCAD Rule Engine Proof base Orbital Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 5 / 11

  10. KeYmaera Architecture Quantifier eliminiation KeYmaera Prover Solvers Input File Strategy Mathematica Rule QEPCAD Rule Engine Proof base Orbital Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 5 / 11

  11. Proof Sketch m − z ≤ SB m − z > SB m − z ≤ SB m − z > SB v ≥ v des v ≤ v des Example . . . Drive Brake � A � � 2 ε 2 � + v 2 − d 2 ε v + A m − z ≥ b + 1 ∧ 0 ≤ a ≤ A ∧ 0 ≤ v ≤ vdes 2 b ∧ v 2 − d 2 ≤ 2 b ( m − z ) ∧ d ≥ 0 ∧ ε > 0 ∧ b > 0 ∧ A > 0 ⊢ ∀ t ≥ 0 (( ∀ 0 ≤ ˜ t ≤ t ( a ˜ t + v ≥ 0 ∧ ˜ t ≤ ε )) → ( at + v ) 2 − d 2 ≤ 2 b ( m − ( 1 2 at + tv + z )) ∧ at + v ≥ 0 ∧ d ≥ 0) Init ⊢ Inv Inv ⊢ [ ETCS ] Inv Inv ⊢ z ≤ m Init ⊢ [ ETCS ∗ ] z ≤ m Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 6 / 11

  12. Proof Sketch m − z ≤ SB m − z > SB m − z ≤ SB m − z > SB v ≥ v des v ≤ v des Example . . . Drive Brake � A � � 2 ε 2 � + v 2 − d 2 ε v + A m − z ≥ b + 1 ∧ 0 ≤ a ≤ A ∧ 0 ≤ v ≤ vdes 2 b ∧ v 2 − d 2 ≤ 2 b ( m − z ) ∧ d ≥ 0 ∧ ε > 0 ∧ b > 0 ∧ A > 0 ⊢ ∀ t ≥ 0 (( ∀ 0 ≤ ˜ t ≤ t ( a ˜ t + v ≥ 0 ∧ ˜ t ≤ ε )) → ( at + v ) 2 − d 2 ≤ 2 b ( m − ( 1 2 at + tv + z )) ∧ at + v ≥ 0 ∧ d ≥ 0) Init ⊢ Inv Inv ⊢ [ ETCS ] Inv Inv ⊢ z ≤ m Init ⊢ [ ETCS ∗ ] z ≤ m Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 6 / 11

  13. Handling Differential Equations Example x ′ = f ( x ) v w ∀ t ≥ 0 [ x := y ( t )] φ [ x ′ = f ( x )] φ φ x := y ( t ) ⊢ [ z ′ = v , v ′ = − b ] z ≤ m . . . Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 7 / 11

  14. Handling Differential Equations Example x ′ = f ( x ) v w ∀ t ≥ 0 [ x := y ( t )] φ [ x ′ = f ( x )] φ φ x := y ( t ) 2 bt 2 + tv + z ] z ≤ m ⊢ ∀ t ≥ 0 [ z := − 1 . . . ⊢ [ z ′ = v , v ′ = − b ] z ≤ m . . . Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 7 / 11

  15. Handling Differential Equations Example x ′ = f ( x ) v w ∀ t ≥ 0 [ x := y ( t )] φ [ x ′ = f ( x )] φ φ x := y ( t ) 2 bt 2 + tv + z ≤ m ) ⊢ ∀ t ≥ 0 ( − 1 . . . 2 bt 2 + tv + z ] z ≤ m ⊢ ∀ t ≥ 0 [ z := − 1 . . . ⊢ [ z ′ = v , v ′ = − b ] z ≤ m . . . Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 7 / 11

  16. KeYmaera Architecture Quantifier eliminiation KeYmaera Prover Solvers Input File Strategy Mathematica Rule QEPCAD Rule Engine Proof base Orbital Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 7 / 11

  17. KeYmaera Architecture Quantifier eliminiation KeYmaera Prover Solvers Input File Strategy Mathematica Rule QEPCAD Rule Engine Proof base Orbital Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 7 / 11

  18. Proof Sketch m − z ≤ SB m − z > SB m − z ≤ SB m − z > SB v ≥ v des v ≤ v des Example . . . Drive Brake � A � � 2 ε 2 � + v 2 − d 2 ε v + A m − z ≥ b + 1 ∧ 0 ≤ a ≤ A ∧ 0 ≤ v ≤ vdes 2 b ∧ v 2 − d 2 ≤ 2 b ( m − z ) ∧ d ≥ 0 ∧ ε > 0 ∧ b > 0 ∧ A > 0 ⊢ ∀ t ≥ 0 (( ∀ 0 ≤ ˜ t ≤ t ( a ˜ t + v ≥ 0 ∧ ˜ t ≤ ε )) → ( at + v ) 2 − d 2 ≤ 2 b ( m − ( 1 2 at + tv + z )) ∧ at + v ≥ 0 ∧ d ≥ 0) Init ⊢ Inv Inv ⊢ [ ETCS ] Inv Inv ⊢ z ≤ m Init ⊢ [ ETCS ∗ ] z ≤ m Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 8 / 11

  19. Proof Sketch m − z ≤ SB m − z > SB m − z ≤ SB m − z > SB v ≥ v des v ≤ v des Example . . . Drive Brake � A � � 2 ε 2 � + v 2 − d 2 ε v + A m − z ≥ b + 1 ∧ 0 ≤ a ≤ A ∧ 0 ≤ v ≤ vdes 2 b ∧ v 2 − d 2 ≤ 2 b ( m − z ) ∧ d ≥ 0 ∧ ε > 0 ∧ b > 0 ∧ A > 0 ⊢ ∀ t ≥ 0 (( ∀ 0 ≤ ˜ t ≤ t ( a ˜ t + v ≥ 0 ∧ ˜ t ≤ ε )) → ( at + v ) 2 − d 2 ≤ 2 b ( m − ( 1 2 at + tv + z )) ∧ at + v ≥ 0 ∧ d ≥ 0) Init ⊢ Inv Inv ⊢ [ ETCS ] Inv Inv ⊢ z ≤ m Init ⊢ [ ETCS ∗ ] z ≤ m Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 8 / 11

  20. Iterative Background Closure Quantifier elimination is 16 doubly exponential 16 16 16 Choice conflict: 8 8 8 ∗ Apply quantifier 4 4 4 1 elimination ∗ 2 2 2 Split using 2 1 1 ⊢ F ⊢ G ⊢ F ∧ G Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 9 / 11

  21. Experimental Results Case Study Interact Steps IBC(s) Eager QE(s) ETCS essentials 0 46 47.8 ∞ 1 46 6.6 8.8 ETCS complete 0 163 2045.2 ∞ 1 168 23.3 ∞ ETCS reactivity 0 49 76.2 ∞ ETCS liveness 3 112 17.6 16.0 Aircraft TRM 0 94 10.9 ∞ 1 94 1.2 1.2 TRM 3 Planes 0 187 171.8 ∞ 1 187 21.2 ∞ TRM 4 Planes 0 255 704.3 ∞ 1 255 170 ∞ Water tank 0 - ∞ ∞ 1 375 2.0 2.0 ∞ ˆ = more than five hours Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 10 / 11

  22. Experimental Results Case Study Interact Steps IBC(s) Eager QE(s) ETCS essentials 0 46 47.8 ∞ 1 46 6.6 8.8 ETCS complete 0 163 2045.2 ∞ 1 168 23.3 ∞ ETCS reactivity 0 49 76.2 ∞ ETCS liveness 3 112 17.6 16.0 Aircraft TRM 0 94 10.9 ∞ 1 94 1.2 1.2 TRM 3 Planes 0 187 171.8 ∞ 1 187 21.2 ∞ TRM 4 Planes 0 255 704.3 ∞ 1 255 170 ∞ Water tank 0 - ∞ ∞ 1 375 2.0 2.0 ∞ ˆ = more than five hours Andr´ e Platzer, Jan-David Quesel KeYmaera: A Hybrid Theorem Prover for Hybrid Systems IJCAR 2008 10 / 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend