j parc e14 k o to csi
play

J-PARC E14 K O TO CsI 03/25/2011 Eito IWAI, - PowerPoint PPT Presentation

J-PARC E14 K O TO CsI 03/25/2011 Eito IWAI, Osaka university Golden Mode


  1. J-PARC E14 K O TO実験で期待 されるCsIカロリメータの性能 03/25/2011 Eito IWAI, Osaka university

  2. ➡標準理論とそれを超える物理への良いプローブ:Golden Mode の大きさ 崩壊とは? • 非常に稀な崩壊 + 全てが中性の粒子:意欲的な実験! Br~3×10 -11 的不定性で決定できる イアグラム:New Physicsに感度がある! • CPの破れの大きさを決めるCKM行列の複素成分ηを小さな理論 • ループを含むダ K L → π 0 ν ¯ ν Im ¯ ¯ d d (b) A = ( $ , % ) W − d s t CP violation ! Z 0 ν 0 K & ' ' ν ¯ L Re # " K L → π 0 ν ¯ C=(0,0) B=(1,0) ν 崩壊ダイアグラム

  3. K O TO detector • シグナル事象:π 0 からの2つのγ線、それ以外に何も観測 されない事象 • 入射するγ線のエネルギーと位置を測定 : CsIカロリメータ γ K L ν

  4. Bessel filter • Bessel filterを通した出力を125MHzのFADCで記録 100ns 100ns

  5. Bessel filter • Bessel filterを通した出力を125MHzのFADCで記録 100ns 100ns

  6. CsI beam test in April • LNS, Tohoku university • beam time : 4/12 - 4/17 • energy : up to 800MeV positron • (0,10,15,20,30,40) [deg] × (100,200,300,460,600,800) [MeV] • setup • 144(12×12) CsI crystals were stacked • scintillating fibers position detector • additional scintillator counter taken by 500MHz FADC

  7. getting energy and timing • fitting method • use template for each channel, energy ( ~ # of p.e. ) • pulse shape differs channel by channel • pulse shape slightly has energy dependence • to separate overlapped pulse shapes • fit region : do not fit tail part time[ns] FADC outputs[cnt]

  8. an example of the template time[ns] pulse shapes was normalized and the peak position was shifted to 140[ns] to generate the template template for chA template for chB template for chB (smaller pulse)

  9. getting energy • two ways to get energy • sumADC : Σ i<48 (ADC i -pedestal) • fitted height ➡ fitted height performs better totalEnergy[MeV] sumADC fitted height ※ energy is calibrated just by cosmic rays

  10. • sources of timing resolution (light yield, noise- FADC outputs[cnt] time[ns] • distance from the perpendicular bisector < 2[mm] • energy difference < 10% exp. • this should be timing resolution at the KOTO level/dynamic-range) are close constants. getting timing have KOTO’s typical light yield and calibration • select two neighboring crystals, both of them • how to estimate timing resolution peak, and calculate timing of the full maximum • “constant fraction” method • fitted peak • two ways to get timing < 2mm - fit again w/ a few samples just before the fitted

  11. getting timing • two ways to get timing • fitted peak • “constant fraction” method peak, and calculate timing of the full maximum time[ns] FADC outputs[cnt] energy[MeV] σ t [ns] fitted peak “const frac” ➡ “const frac” performs better - fit again w/ a few samples just before the fitted

  12. non-linearity • non-linearity was found • As amount of non-linearity is related to its pulse height, plot the maximum height in each event versus total energy. • E maximum > 2×E 2nd • E maximum > E else maximumHeight[cnt] 4000 2000 maximumHeight[cnt] totalEnergy[MeV] relative output E i < E j ??

  13. • based on the roughly calibrated height[ch] some function • fit the constant for each height w/ for smaller pulse height ones for higher pulse height to ones constants, re-calibrate constants from height region energy calibration w/ non-linearity each constant for the additional constraint step by step, and decide • relax the maximum pulse height all crystals have heights < 4000. • calibrate constants w/ event in which • procedure correction factor

  14. consistency check of the correction • after applying correction factor by the dedicated run maximumHeight[cnt] maximumHeight[cnt] totalEnergy[MeV] relative output 4000 2000

  15. consistency check of the correction • correction for the non-linearity part w/o correction w/ correction 0deg, 800MeV height[ch] correction factor totalEnergy[MeV]

  16. consistency check of the correction • correction for the linear part ( 594.7 → 588.8 ⇔ 590@0deg by MC ) w/o correction w/ correction 30deg, 600MeV, maxHeight<3000 height[ch] correction factor totalEnergy[MeV] - width : getting a bit better - peak : shift a bit toward reasonable direction

  17. more about timing • some applications of timing information • from some activities in a cluster, define one cluster timing • get shower developing information ➡ relative timing between each channel is necessary dependence of timing w/ our method ( some kind of time skew ) ➡ use extra scintillator taken by 500MHz FADC to define a reference timing ✴ ... before evaluating relative timing, we should check energy

  18. PMT ch1 ch0 FADC outputs time[ns] an event recored by 500MHz FADC PMT • calculate σ (t0+t1)/2 by σ t0-t1 additional scintillator • use (t 0 +t 1 )/2 as a reference timing • strategy 500MHz FADC • 2 PMTs : each channel was taken by was installed as a reference of timing • In some runs, additional scintillator x

  19. additional scintillator • only t 0 -t 1 has its incident position dependence ( t 0 +t 1 : canceled ) x[mm] on the scifi tracker t 0 -t 1 [ns] y[mm] on the scifi tracker

  20. applying the incident position correction • “constant fraction” method performs better again... ➡ expected timing resolution as a reference σ (t0+t1)/2 ~ σ t0-t1 /2 = 100[ps] fitted peak constant fraction t 0 -t 1 [ns] t 0 -t 1 [ns] σ t0-t1 ~200[ps]

  21. • check the energy dependence of CsI timing for each distance of closest approach from a certain crystal ( to get rid of timing spread by shower developing ) energy dependence of timing energy[MeV] t CsI -t 500MHz [ns] distance : [8,16) [mm] crystal 0 1 2 3 - hit on the crystal - distance from the crystal : < n×8[mm]

  22. energy dependence of timing • about 2[ns] timing shift at higher energy region • some dependence also in lower energy region? energy[MeV] t CsI -t 500MHz [ns] region0 region1 region2 region3

  23. timing resolution w/ external reference timing • evaluate timing resolution again with the external reference timing energy[MeV] σ t [ns] constant fraction σ t [ns] energy[MeV] previous result w/ neighboring crystals obtained with external reference timing

  24. non-linearityの要因 • CsI - PMT - CW/preamp - FADC • PMTは単独で4GeV相当まで問題ない事が 確認されている by Jwlee • FADCにも問題がない事が確認されている by Chicago ➡ CW/preamp が原因? - CsIの波形をFunctionGeneratorで生成、 CW内のpreampカードを通してFADCで 記録

  25. ビームテストのデータ energy[MeV] t CsI -t 500MHz [ns] region0 region1 region2 region3

  26. 追試験の結果 入力電圧[mV] ∝ sumADC/入力 Δt[ns] 入力電圧[mV]

  27. toy-simulation height[cnt] height[cnt] ∝ sumADC/charge t[ns]

  28. Summary • 読み出した波形データからエネルギーと時間を再構成する 方法を確立 • non-linearityが見つかった • エネルギーにおける効果の補正はできそう • 時間情報における効果のスタディはまだ始めたばかり • non-linearityはCW base内のpreampが原因と思われる

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend