intense lasers high peak power part 2 propagation
play

Intense lasers: high peak power Part 2: Propagation Bruno Le Garrec - PowerPoint PPT Presentation

Intense lasers: high peak power Part 2: Propagation Bruno Le Garrec Directeur des Technologies Lasers du LULI LULI/Ecole Polytechnique, route de Saclay 91128 Palaiseau cedex, France bruno.le-garrec@polytechnique.edu 31/08/2016 Bruno Le


  1. Intense lasers: high peak power Part 2: Propagation Bruno Le Garrec Directeur des Technologies Lasers du LULI LULI/Ecole Polytechnique, route de Saclay 91128 Palaiseau cedex, France bruno.le-garrec@polytechnique.edu 31/08/2016 Bruno Le Garrec page LPA school Capri 2017 1

  2. CNE400 : half kilojoule laser Continuum - National Energetics Bruno Le Garrec page LPA school Capri 2017 2

  3. CNE400: 1.5 m x 6 m Bruno Le Garrec page LPA school Capri 2017 3

  4. CNE400 CNE400 is delivering 200 J @ 527 nm @ 1 shot/mn rep-rate (and 300J IR) • Beam diameter 60 mm, low divergence (< 0,2 mrad) and poyntingstability =22 microrads RMS) • Pulse shaping capability: 40 ns • Phase modulation for smoothing purpose (« SSD ») • Deformable mirror • T. Ditmire et al (2014), CLEO 2014, Technologies for high intensity (STU3F), doi:10.1364/CLEO_SI.2014.STu3F.1 Bruno Le Garrec page LPA school Capri 2017 4

  5. Next step: L4 for ELI-Beamlines • 2 main amps : 1 multipass 180 mm + 1 booster 300 mm • Mixed silicate and phosphate laser glasses • Expected up to 2 kJ stretched – 1.5 kJ compressed to 150 fs 1.7 kJ To compressor 2 Power Amplifiers ns OPCPA Front-end ps OPCPA Stretcher + Pulse cleaner Bruno Le Garrec page LPA school Capri 2017 5

  6. Multiple pass amplifier with adaptive optic Deformable Disks amplifier Lens Mirror Pinhole 1 st & 3 rd pass 2 nd & 4 th pass • It can be shown that this configuration is the best one for correcting the wave front • Both NIF and LMJ prototype (LIL facility) have achieved more than 85% THG efficiency • Both NIF and LMJ prototype (LIL facility) can fire every 2 hours (amplifier slabs are not cooled) • LLE (OMEGA EP) while using this type of amplifier with water cooled lamps (but still un-cooled slabs) can fire every hour. Bruno Le Garrec page LPA school Capri 2017 6

  7. Wavefront Correction • Wavefront distortions are coming from: – Dynamic aberrations from thermal effects in the amplifiers – Static aberrations from optical components • Deformable mirror & spatial filtering MDA MDA MDA M2 M2 M2 MdT2 MdT2 MdT2 LdT LdT LdT MdT1 MdT1 MdT1 WAVEFRONT WAVEFRONT WAVEFRONT MT1 MT1 MT1 SENSOR SENSOR SENSOR AMPLIFIER AMPLIFIER AMPLIFIER 9 LASER GLASS 9 LASER GLASS 9 LASER GLASS FST FST FST L4 L4 L4 Mi5 Mi5 Mi5 SLABS SLABS SLABS Mi4 Mi4 Mi4 AMPLIFIER AMPLIFIER AMPLI Li Li Li 9 LASER GLASS 9 LASER GLASS 9 LASER GLASS L3 L3 L3 Mi3 Mi3 Mi3 SLABS SLABS SLABS toward3 w section toward3 w section toward3 w section Mi2 Mi2 Mi2 L2 L2 L2 Mi1 Mi1 Mi1 L1 L1 L1 COMPUTER COMPUTER COMPUTER DFM DFM Bruno Le Garrec page LPA school Capri 2017 7

  8. Wavefront correction loop Open or close Loop Wavefront correction sofware Reference Source at FST4 Wavefront sensor Section Transport Deformable Mirror 30-mn Stability Section Conversion en fréquence et Focalisation Bruno Le Garrec page 8

  9. Wavefront Correction FST1 = Ab INJ FST2 = Ab INJ + 2 Ab AMPLI FST3 = Ab INJ + 2 Ab AMPLI + 2 Ab DT FST4 = Ab INJ + 4 Ab AMPLI + 2 Ab DT When applying the correction - ( Ab INJ + 4 Ab AMPLI + 2 Ab DT )/2 to the deformable mirror, one gets: FST1 = Ab INJ FST2 = ½ Ab INJ – Ab DT FST3 = ½ Ab INJ + Ab DT FST4 = 0. Injection Ampli FST1 M1 Δϕ = 53,9 rad FST2 Ampli Demi-tour M2 FST3 Ampli M1 FST4 Ampli Bruno Le Garrec page LPA school Capri 2017 9

  10. Solid State Heat Capacity Laser* • 2006 : 67 kW using 5 ceramic Nd:YAG slabs, 10 cm aperture • average output power in a ½ second burst mode, 500 microsecond pulse width, 200 Hz • Efficiency not known • Beam quality not known but 2 x DL at 10 kW. How much at 67 kW ? • Main trouble : pump uniformity of the diode arrays • *R.YAMAMOTO SPIE, 6552, 655205 (2007) Bruno Le Garrec page LPA school Capri 2017 10

  11. Disk Laser Face-pumped by 2D-stack Diode Arrays* • 27 kW pump power per disk (6.75 J) at 400 Hz (10% duty cycle) => 2.7 kW average power • Diode efficiency at 120 A = 50% • 1 to 5 disks : 40 mm Nd:YAG • Typical 26% optical efficiency at 3.24 kW output (5 disks) with 8x DL • C. TANG et al, SPIE, 7131 , 713113 (2009) Bruno Le Garrec page LPA school Capri 2017 11

  12. Conclusion /1 • None of the diode-pumped solid-state lasers have been able to reach the kW level (100 J @ 10 Hz) • DPSSL nearby the kW level have a moderate efficiency (<5 %) lower than expected • Flash lamp pumped fusion lasers are still in the run with a low efficiency (0.5 to 1%) – But can access > 85% SHG/THG • A flash lamp pumped amplifier with flow-cooled plates can run at 1 shot/mn – At low efficiency – 200J frequency doubled flash lamp pumped laser • High average power is an engineering problem : – Solve the thermal problem at first – Optimize the heat exchange coefficient – Work at low temperature Bruno Le Garrec page LPA school Capri 2017 12

  13. Conclusion /2 • Use adaptive optics (deformable mirrors associated with pinholes) => better M 2 factors • Cool the amplifier medium to cryogenic temperature => increase optical efficiency and thermo-mechanical properties – Cryogenic temperature : at 77 K, the thermal conductivity of un-doped YAG is greater than 70 W/m.K (almost 7 times the 300 K value). Some early data were close to 100 W/m.K – According to D. Brown, the extractable power can be increased by a factor 4 to 5 between 300 and 77 K but the typical heat flux coefficient h fall in the range 1-10 W/cm 2 .K for water cooling at room temperature and is a little bit less for liquid N 2 at 77K. • Use wide angular acceptance crystals => access high frequency conversion with moderate M 2 factors Bruno Le Garrec page LPA school Capri 2017 13

  14. References J. EMMETT et al, “The potential of high-average-power solid state lasers”, UCRL 53571, LLNL (1984) D.C. BROWN, “Ultrahigh-average_power diode-pumped Nd:YAG and Yb:YAG Lasers,” IEEE J. Quantum Electron. , 33 , no.5 (1997) W. KOECHNER, Solid-state laser engineering , 5th ed., Springer, Ed., (1999). T. NUMAZAWA, O. ARAI, Q. Hu and T. Noda, “Thermal Conductivity Measurements for Evaluation of Crystal Perfection at Low Temperatures,” Meas. Sci. Technol. 12 , 2089-2094 (2001) D.C. BROWN, “The Promise of Cryogenic Solid-State Lasers,” IEEE J. Sel. Topics Quantum Electron. , 11 , no.3 (2005) R.M. YAMAMOTO et al, “Evolution of a Solid State Laser,” Proc. of SPIE, vol. 6552, 655205 (2007) T.Y. FAN et al, “Cryogenic Yb 3+ -Doped Solid-State Lasers,” IEEE J. Sel. Topics Quantum Electron. , 13 , no.3 (2007) D.C. BROWN et al, “Kilowatt Class High-Power CW Yb:YAG Cryogenic Laser,” Proc. of SPIE, vol. 6952, 69520K (2008) C. TANG et al, “High-Average Power Disk Laser Face-pumped by 2D-stack Diode Arrays”, Proc. of SPIE, vol. 7131, 713113 (2009) S.G. GRECHIN and P.P. NIKOLAEV, “Diode-side-pumped laser heads for solid-state lasers”, Quantum Electronics 39 (1) 1-17 (2009) B. Le Garrec (2014) High Power Laser Science and Engineering, volume 2, e28 doi:10.1017/hpl.2014.33 T. Ditmire et al (2014), CLEO 2014, Technologies for high intensity (STU3F), doi:10.1364/CLEO_SI.2014.STu3F.1 Bruno Le Garrec page LPA school Capri 2017 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend