instantons in gauge theories with n 1 2 supersymmetry
play

Instantons in gauge theories with N=1/2 supersymmetry Oleg Lunin - PDF document

Instantons in gauge theories with N=1/2 supersymmetry Oleg Lunin Institute for Advanced Study R. Britto, B. Feng, O. L., SJ. Rey, hep-th/0311275 Outline Noncommutative superspace. Gauge theory on NS classical aspects


  1. Instantons in gauge theories with N=1/2 supersymmetry Oleg Lunin Institute for Advanced Study R. Britto, B. Feng, O. L., S–J. Rey, hep-th/0311275

  2. Outline • Noncommutative superspace. • Gauge theory on NS – classical aspects – perturbative regime – instanton solutions and supersymmetry • One instanton solution in U(N) gauge theory. – procedure for deforming the instanton – geometry of the deformed moduli space • Chiral ring and gluino condensate • Summary

  3. String in graviphoton field • String in flat space � 1 α � L = 1 ˙ ∂θ α + ¯ α + ˜ θ α + ˜ α ∂ ˜ ∂x µ ∂x µ + p α ˜ ˜ α ˜ ∂ ¯ p α ∂ ˜ ¯ θ ˙ ¯ p ˙ p ˙ θ 2 α ′ Berkovits ’96 • Euclidean target space: independent θ, ¯ θ, p, ¯ p : � � � � � � α ) → ( − ∂ ∂θ α , − ∂ ∂ α → − ∂ ¯ � � � ( p α , ¯ p ˙ α ) , q α → , d ˙ � � � ∂ ¯ α ˙ θ ˙ ∂θ α ∂ ¯ θ x y y α ˙ y µ = x µ + iθ α σ µ α + i ˜ α ˜ α ¯ θ α σ µ ¯ θ ˙ θ α ˙ α ˙ p → ¯ • Change of variables: p → q, ¯ d : α ∂x µ + 1 2 θθ∂θ α − 3 q α = − p α − iσ µ 2 ∂ ( θ α θθ ) α ˙ • New Lagrangian: � 1 α � L = 1 ˙ ∂θ α + ¯ α − ˜ θ α + ˜ α ∂ ˜ ∂y µ ∂y µ − q α ˜ ˜ α ˜ ∂ ¯ q α ∂ ˜ ¯ ¯ θ ˙ d ˙ d ˙ θ 2 α ′ • D brane: θ = ˜ θ, q = ˜ q at z = ˜ z • Preserved SUSY: � � qdz + ˜ ( qdz + ˜ qd ˜ z ) , (¯ qd ˜ ¯ z )

  4. Graviphoton and Noncommutative Superspace • Adding graviphoton field to the Lagrangian: � � L 1 = 1 ∂θ α − ˜ θ α + α ′ F αβ q α ˜ − q α ˜ q α ∂ ˜ q β α ′ • To avoid gravitational backreaction: F ˙ β = 0 α ˙ • Effective Lagrangian: � 1 � θ α ˜ ∂ ˜ ∂θ β L eff = α ′ F αβ • Boundary conditions at z = ˜ z : � 1 � θ α = ˜ θ α , θ α δθ β + ˜ ( ∂ ˜ ∂θ α δ ˜ θ β ) = 0 : θ α = − ˜ ∂ ˜ α ′ F ∂θ α αβ • Propagators: w ) � = α ′ 2 πiF αβ log ˜ z − w � θ α ( z, ˜ z ) θ β ( w, ˜ z − ˜ w � θ α ( τ ) θ β ( τ ′ ) � = α ′ 2 F αβ sign ( τ − τ ′ ) { θ α , θ β } = α ′ 2 F αβ = C αβ , [ y µ , y ν ] = 0 Seiberg ’03

  5. Gauge theory on Noncommutative Superspace • Noncommutative superspace: y m = x m + iθ α σ m α ¯ { θ α , θ β } = C αβ , θ ˙ α α ˙ • Star product: finite number of terms � � ← − − − − → − C αβ ∂ ∂ f ( θ ) ⋆ g ( θ ) = f ( θ ) exp g ( θ ) ∂θ α ∂θ β 2 • Modification of SUSY algebra: ∂ 2 { ¯ α , ¯ β } ⋆ = − 4 C αβ σ m α σ n Q ˙ Q ˙ α ˙ β ˙ β ∂y m ∂y n • Gauge field: � � W α = − 1 e − V ⋆ D α e V → e − i Λ ⋆ W α ⋆ e i Λ 4 DD ⋆ ⋆ ⋆ ⋆ • WZ gauge: C –dependent corrections to V . • Action for “ N = 1 2 ” SYM: � iτ � � iτ � � � 8 π W α ⋆ W α d 4 x Tr d 4 x Tr S = − θ 2 + 8 π W ˙ α ⋆ W ˙ α ¯ θ 2

  6. Perturbative N = 1 2 SYM • Lagrangian for the component fields � � L = 1 − 1 σ m ∇ m λ + 1 4 F mn F mn − i ¯ 2 D 2 λ ¯ g 2 Tr � � − iC mn F mn λλ + C 2 + 1 8 ( λλ ) 2 g 2 Tr 2 Seiberg ’03 • Operators with ∆ = 5 : no renormalizability � � (∆ i − 4) − 1 Ω div = 4 + ( r l + d l + 4) 2 i ∈ L ext � � = 4 + (∆ i − 4) − s l ext i ∈ L • Assumption: new vertices are connected without changing external lines

  7. Renormalization of N = 1 2 SYM • Features of the theory: – no hermiticity – R symmetry: λ → e iα λ • “Non–renormalizable” vertices: lines cannot terminate inside the diagram � � � � ′ ′ Ω div = 4 + (∆ i − 4) + (∆ i − 4) − s l − s l i ∈ L i ∈ L ext ext � � � ′ ( ˜ = 4 + (∆ i − 4) + ∆ i − 4) − s l i ∈ L i ∈ L ext • ˜ ∆ < 4 accounts for R charge flow • SYM is renormalizable: no new vertices. O L, Rey

  8. Instantons in N = 1 2 SYM • Instantons in N = 1 SYM – minimal action in a given topological sector – solutions preserving N = 1 2 SUSY • SUSY transformations in N = 1 2 theory � � F αβ + i δλ α = iε α D + 2 2 C αβ λλ ε β ˙ ˙ β β δD = − ε α ∇ α ˙ δF αβ = − iε ( α ∇ β ) ˙ β λ β λ • Instantons preserving SUSY F αβ + i β = 0 , ˙ 2 C αβ λλ = 0 , ∇ α ˙ λ α = D = 0 β λ • Alternative derivation: rewrite the action as � � � � 2 � S = 1 mn + i − iλ σ m ∇ m ¯ d 4 x Tr F (+) λ + D 2 − 2 C mn λλ g 2 � − iτ Tr F ∧ F. 4 π • “Instanton number” is negative • “Holomorphic instanton” – no deformation: β = 0 , αβ λ β = 0 , α ˙ F ˙ ∇ ˙ α = D = 0 λ ˙

  9. Constructing Deformed Instantons • Equations to be solved F αβ + i β = 0 ˙ 2 C αβ λλ = 0 , ∇ α ˙ β λ • Perturbation theory in C αβ : truncated series • Example: one instanton for U (2) α = ¯ α + x ˙ ˙ ¯ β ¯ ¯ β , ξ ˙ ζ ˙ α α η α α = F ˙ λ ˙ ξ α ˙ – Fermi statistics: λλ ∈ U (1) – prepotential for the U (1) part: A m = C mn ∇ n Φ – solution of the Laplace equation for Φ : � � ρ 2 α + 1 α + ρ 2 η α η α ) ˙ ˙ Φ = − 8 i ( r 2 + ρ 2 ) 2 ξ ˙ α ξ r 2 + ρ 2 ( ζ ˙ α ζ Imaanpur

  10. One Instanton for U(N) • k instantons for U ( N ) : 2 kN zero modes • Generically series terminates at | C | kN • One instanton solution: series up to | C | 3 • Zero modes for one instanton: � α η α � β + x ˙ ˙ λ (0) = F (0) ¯ ¯ β ζ α ˙ α ˙ ˙ β α χ i χ i i = a = ε a ˙ ¯ λ (0) λ (0) ¯ ¯ ( x 2 + ρ 2 ) 3 / 2 δ a ( x 2 + ρ 2 ) 3 / 2 αa ˙ αi ˙ α ˙ • Global U ( N − 2) rotation: χ 4 = . . . = χ N = 0 • Exact solution found by perturbation theory � Φ (1) +Φ (2) +Φ (3) � � Φ (1) , ∇ n Φ (1) � + i A m = A (0) m + C mn ∇ n 16 C kl C kl � � � � α �� − C kl C kl α = λ ˙ (0) ˙ α +¯ (0) ˙ Ψ (1) + Ψ (2) σ m ˙ αα C α β ∇ m Φ (1) , Φ (1) , λ λ β β 32 • Poisson equations for prepotentials ∇ 2 Φ ( m ) = J ( m ) , ∇ 2 Ψ ( m ) = K ( m ) α α

  11. Explicit Form of the Instanton • Undeformed solution b = − 2 iε ca ( A (0) x 2 + ρ 2 ( δ a β x b β + δ b β x a β ) c β ) ˙ ˙ β ˙ b = 8 iε ca ρ 2 ( F (0) ( x 2 + ρ 2 ) 2 ( δ a α δ b β + δ b α δ a β ) c β ) ˙ ˙ α ˙ ˙ ˙ ˙ • Prepotentials � � ρ 2 χ i χ i b = − 8 i 1 1 α + α + ρ 2 η α η α ) − ˙ ˙ (Φ (1) ) a δ b ( r 2 + ρ 2 ) 2 ξ ˙ α ξ r 2 + ρ 2 ( ζ ˙ α ζ r 2 + ρ 2 a 64 ρ 2 a ˙ a χ i χ i χ j 2 ξ ˙ 2 χ i ξ i ¯ i = − a = − j = (Φ (1) ) a (Φ (1) ) i (Φ (1) ) i ( r 2 + ρ 2 ) 3 / 2 ; ( r 2 + ρ 2 ) 3 / 2 ; r 2 + ρ 2 4 ρ 2 x m x n χ i χ i 1 b = − 2 iC mk (Φ (2) ) a ( ρ 2 + r 2 ) 3 ( σ kn ) b a ρ 2 � � α ˙ ζ ˙ α ζ ( r 2 + 2 ρ 2 ) − ρ 2 η α η α − η α x α ˙ α ˙ α ζ × ρ 2 � � χ i χ i 1 b ( xC ) a ζ a ( xC ) bα η α + ζ α η α + 2 i ( ρ 2 + r 2 ) 2 ρ 2 � � α ˙ χ i ( r 2 + 2 ρ 2 ) ζ ˙ α ζ a = − 8 α ˙ (Φ (2) ) i ( xC ) aα η α + η α η α ( xCx ) a α ζ ( r 2 + ρ 2 ) 5 / 2 ˙ ρ 2 � � α ˙ χ i i = − 8 ( r 2 + 2 ρ 2 ) ζ ˙ α ζ α ˙ (Φ (2) ) a α η α + η α η α ( xCx ) a ˙ ( xC ) a α ζ ( r 2 + ρ 2 ) 5 / 2 ρ 2 � � α ¯ 1 , 1 , 2 r 4 + 4 r 2 ρ 2 + ρ 4 η α η α ¯ α ¯ ζ ˙ χ i χ i Φ (3) = i C kl C kl ζ ˙ ( r 4 +6 r 2 ρ 2 +3 ρ 4 ) diag ρ 4 ( r 2 + ρ 2 ) 3 r 4 + 6 r 2 ρ 2 + 3 ρ 4 2

  12. Metric on the Moduli Space • Motivation – measure on the moduli space – metric on MS and AdS/CFT – instanton MS in large N → bulk geometry – leading contribution: SU(2) instantons Dorey at ’96 • Problems with L 2 metric – no manifest gauge invariance – no conformal invariance • Information metric: � d 4 x ∂ A F ∂ B F G AB dZ A dZ B ≡ dZ A dZ B F Hitchin ’88 • Instanton density 1 F [ x, Z A ] = 16 π 2 Tr F ∧ F • AdS/CFT: bulk–to–boundary propagator: � ∆ Z F [ x, Z A ] = 0 , F [ x, Z A ] � ρ =0 = δ 4 ( x − X ) Balasubramanian et al ’98

  13. Information Metric • Undeformed U (2) instanton – moduli space: ρ, X, ¯ ζ, η – instanton density and information metric 96 ρ 4 1 F = [( x − X ) 2 + ρ 2 ] 4 16 π 2 � dρ 2 � ρ 2 + dX 2 G AB dZ A dZ B = 128 ρ 2 5 Blau, Narain, Thompson ’01 • Instanton with C deformation – density is a function of ρ, X, ¯ ζ, η, χ, ¯ χ 1 1 0.4 0.5 0.5 0.2 0 0 0 -0.2 -0.5 -0.5 -0.4 -1 -1 -0.4 -0.2 0 0.2 0.4 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 – information metric � � � ρ 2 d � G AB dZ A dZ B = 128 6 ρ 6 C 2 S 1 − 96 ρ 2 C 2 S 2 1 + � ρ 2 5 7˜ 7˜ � � � + d � X 2 3 ρ 6 C 2 S 1 + 24 − C 2 13 ρ 2 C 2 S 2 ρ 7 T m d � 1 − ρ dX m � 14 � 7 � 14 � ρ 2 – determinant is C –independent

  14. Chiral Ring & Gluino Condensate • Antichiral ring: [ Q, O ] = 0 . – ring property O ∼ O + [ Q, M } : � [ Q, M }O 1 . . . O n � = 0 – coordinate independence: ∂ O ∼ [ Q, [ Q, O}} – C –independence δ δL = { Q α , J α } δC αβ �O 1 . . . O n � = 0 – alternative ring [ D, O} = 0 is deformed Seiberg ’03 • No chiral ring since Q is not a symmetry • Gaugino condensate: perturbative and instanton corrections 4 4 4 λ λ λ Imaanpur ’03

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend