imprecise random variables random sets and monte carlo
play

Imprecise random variables, random sets, and Monte Carlo simulation - PowerPoint PPT Presentation

Imprecise random variables, random sets, and Monte Carlo simulation Thomas Fetz, Michael Oberguggenberger Unit for Engineering Mathematics University of Innsbruck, Austria Thomas.Fetz@uibk.ac.at Michael.Oberguggenberger@uibk.ac.at


  1. Imprecise random variables, random sets, and Monte Carlo simulation Thomas Fetz, Michael Oberguggenberger Unit for Engineering Mathematics University of Innsbruck, Austria Thomas.Fetz@uibk.ac.at Michael.Oberguggenberger@uibk.ac.at ISIPTA’15, Pescara, Italia Th.Fetz, M. Oberguggenberger Imprecise random variables, random sets, and Monte Carlo simulation ISIPTA’15, Pescara, Italia 1 / 10

  2. Research team Unit of Engineering Mathematics Faculty of Engineering Sciences University of Innsbruck, Austria Research team “imprecise probabilities”: Michael Oberguggenberger Thomas Fetz (head of unit) Jelena Nedeljkovic Martin Schwarz Th.Fetz, M. Oberguggenberger Imprecise random variables, random sets, and Monte Carlo simulation ISIPTA’15, Pescara, Italia 2 / 10

  3. Problem Given Expensive input-output map g : R n → R : x → g ( x ) . E.g. finite element computations (minutes or hours per computation). Family { X λ } λ ∈ Λ of random variables modelling the uncertainty of variable x . Aim Upper/lower probabilities that g ( x ) ∈ B . Upper/lower probabilities that g ( x ) ≤ y (upper/lower cumulative distribution functions). Upper/lower probabilities that g ( x ) ≤ 0 (upper/lower probability of failure). Two approaches Monte-Carlo simulation of { g ( X λ ) } λ ∈ Λ . Monte-Carlo simulation of the random set X generated by { g ( X λ ) } λ ∈ Λ . Th.Fetz, M. Oberguggenberger Imprecise random variables, random sets, and Monte Carlo simulation ISIPTA’15, Pescara, Italia 3 / 10

  4. Two approaches 1 Family { X λ } λ ∈ Λ of random variables 2 Random set X based on { X λ } λ ∈ Λ Probability space ( Ω , Σ , m ) . Set-valued map X : Ω → R defined by Family { X λ } λ ∈ Λ of random variables X ( ω ) = { X λ ( ω ) : λ ∈ Λ } . X λ : Ω → R : ω → X λ ( ω ) . X is a random set, if upper/lower inverses Probability P ( X λ ∈ B ) for fixed X λ : � X − ( B ) = { ω ∈ Ω : X ( ω ) ∩ B � = ∅ } , P ( X λ ∈ B ) = Ω ✶ X λ ( ω ) ∈ B d m ( ω ) . X − ( B ) = { ω ∈ Ω : X ( ω ) ⊆ B } are measurable subsets of Ω . (for initial analysis we drop the map g ) Th.Fetz, M. Oberguggenberger Imprecise random variables, random sets, and Monte Carlo simulation ISIPTA’15, Pescara, Italia 4 / 10

  5. Two approaches 1 Family { X λ } λ ∈ Λ of random variables 2 Random set X based on { X λ } λ ∈ Λ Probability space ( Ω , Σ , m ) . Set-valued map X : Ω → R defined by Family { X λ } λ ∈ Λ of random variables X ( ω ) = { X λ ( ω ) : λ ∈ Λ } . X λ : Ω → R : ω → X λ ( ω ) . X is a random set, if upper/lower inverses Probability P ( X λ ∈ B ) for fixed X λ : � X − ( B ) = { ω ∈ Ω : X ( ω ) ∩ B � = ∅ } , P ( X λ ∈ B ) = Ω ✶ X λ ( ω ) ∈ B d m ( ω ) . X − ( B ) = { ω ∈ Ω : X ( ω ) ⊆ B } are measurable subsets of Ω . (for initial analysis we drop the map g ) Lower/upper probabilities for { X λ } λ ∈ Λ Lower/upper probabilities for X � � P ( B ) = inf λ ∈ Λ P ( X λ ∈ B ) = inf Ω ✶ X λ ( ω ) ∈ B d m ( ω ) P ( B ) = m ( X − ( B )) = Ω ✶ X ( ω ) ⊆ B d m ( ω ) � λ ∈ Λ � � P ( B ) = m ( X − ( B )) = P ( B ) = sup P ( X λ ∈ B ) = sup Ω ✶ X λ ( ω ) ∈ B d m ( ω ) � Ω ✶ X ( ω ) ∩ B � = ∅ d m ( ω ) λ ∈ Λ λ ∈ Λ Th.Fetz, M. Oberguggenberger Imprecise random variables, random sets, and Monte Carlo simulation ISIPTA’15, Pescara, Italia 4 / 10

  6. Two approaches 1 Family { X λ } λ ∈ Λ of random variables 2 Random set X based on { X λ } λ ∈ Λ Probability space ( Ω , Σ , m ) . Set-valued map X : Ω → R defined by Family { X λ } λ ∈ Λ of random variables X ( ω ) = { X λ ( ω ) : λ ∈ Λ } . X λ : Ω → R : ω → X λ ( ω ) . X is a random set, if upper/lower inverses Probability P ( X λ ∈ B ) for fixed X λ : � X − ( B ) = { ω ∈ Ω : X ( ω ) ∩ B � = ∅ } , P ( X λ ∈ B ) = Ω ✶ X λ ( ω ) ∈ B d m ( ω ) . X − ( B ) = { ω ∈ Ω : X ( ω ) ⊆ B } are measurable subsets of Ω . (for initial analysis we drop the map g ) Lower/upper probabilities for { X λ } λ ∈ Λ Lower/upper probabilities for X � � P ( B ) = inf λ ∈ Λ P ( X λ ∈ B ) = inf Ω ✶ X λ ( ω ) ∈ B d m ( ω ) P ( B ) = m ( X − ( B )) = Ω ✶ X ( ω ) ⊆ B d m ( ω ) � λ ∈ Λ � � P ( B ) = m ( X − ( B )) = P ( B ) = sup P ( X λ ∈ B ) = sup Ω ✶ X λ ( ω ) ∈ B d m ( ω ) � Ω ✶ X ( ω ) ∩ B � = ∅ d m ( ω ) λ ∈ Λ λ ∈ Λ Theorem ≤ P ≤ P ≤ � P P X is more imprecise than { X λ } λ ∈ Λ ! � Th.Fetz, M. Oberguggenberger Imprecise random variables, random sets, and Monte Carlo simulation ISIPTA’15, Pescara, Italia 4 / 10

  7. Example � 1 e − ω 2 / 2 d ω . Probability space: ( Ω , Σ , m ) = ( R , B ( R ) , m ) , m ( B )= √ R ✶ ω ∈ B 2 π 1 ⇒ X ( µ , σ ) ∼ N ( µ , σ 2 ) . Family { X ( µ , σ ) } ( µ , σ ) ∈ Λ : X ( µ , σ ) ( ω ) = σω + µ = Λ = [ µ , µ ] × [ σ , σ ] = [ − 0 . 5 , 2 ] × [ 1 , 2 ] , B = [ 1 , 2 . 5 ] . X ( ω ) = { X λ ( ω ) : λ ∈ Λ } = [ X ( ω ) , X ( ω )] � 4 σω + µ ω < 0 X X ( ω ) = inf X ( µ , σ ) ( ω ) = σω + µ ω ≥ 0 X ( ω = 1 ) µ ∈ [ µ , µ ] 2 X ( ω ) � σ ∈ [ σ , σ ] X ( 1 . 5 , 1 . 3 ) σω + µ ω < 0 X ( ω ) = X ( µ , σ ) ( ω ) = sup 0 σω + µ ω ≥ 0 µ ∈ [ µ , µ ] X X σ ∈ [ σ , σ ] − 1 1 0 3 P ( B ) = ( µ , σ ) ∈ Λ P ( X ( µ , σ ) ∈ B ) = P ( X ( − 0 . 5 , 1 ) ∈ B ) inf 2 , 1 ) X ( − 1 = 0 . 0655 2 . 5 P ( B ) = sup P ( X ( µ , σ ) ∈ B ) = P ( X ( 1 . 75 , 1 ) ∈ B ) B ( µ , σ ) ∈ Λ = 0 . 5467 1 X ( ω ) X ( 1 . 75 , 1 ) P ( B ) = m ( X − ( B )) = m ( ∅ ) = 0 . 0000 1 1 � X P ( B ) = m ( X − ( B )) = m ([ − 1 , 3 ]) � 1 1 − 1 0 3 4 = Φ ( 3 ) − Φ ( − 1 ) = 0 . 8400 ω Th.Fetz, M. Oberguggenberger Imprecise random variables, random sets, and Monte Carlo simulation ISIPTA’15, Pescara, Italia 5 / 10 1 1 1 1 1 1 1 1 1 1 1 1

  8. Simulation of a family { X λ } λ ∈ Λ of random variables 1 Basic sample x 1 ,..., x N samp Generate a sample x 1 ,..., x N samp which is distributed as a basic random variable X ∗ . Distribution of X ∗ should cover a greater range than a distribution of a single X λ does. 2 N samp function evaluations g ( x k ) , k = 1 ,..., N samp We compute g ( x k ) either using g directly or a cost saving surrogate model ˜ g . 3 Approximation of P ( g ( X λ ) ≤ y ) Probability P ( g ( X λ ) ≤ y ) for fixed λ is computed by reweighting the original sample. Weights w k ( λ ) depending on parameters λ for reweighting the sample x 1 ,..., x N samp according to the distribution of X λ : w k ( λ ) = f X λ ( x k ) = f new ( x k ) 1 1 f X ∗ ( x k ) N samp f old ( x k ) N samp where f X λ and f X ∗ are strictly positive densities. P ( g ( X λ ) ≤ y ) for different X λ without additional function evaluations of g : � N samp N samp ∑ P ( g ( X λ ) ≤ y ) = Ω ✶ g ( X λ ( ω )) ≤ y d m ( ω ) ≈ ∑ ✶ g ( X λ ( ω k )) ≤ y · w k ( λ ) = ✶ g ( x k ) ≤ y · w k ( λ ) . k = 1 k = 1 Th.Fetz, M. Oberguggenberger Imprecise random variables, random sets, and Monte Carlo simulation ISIPTA’15, Pescara, Italia 6 / 10

  9. Simulation of a family { X λ } λ ∈ Λ of random variables 4 Approximation of P ( g ≤ y ) and P ( g ≤ y ) For the computation of the upper/lower probabilities P ( g ≤ y ) and P ( g ≤ y ) we use a grid of representative parameter values λ i , estimate the probabilities P ( g ( X λ i ) ≤ y ) at the grid points λ i by means of MC simulation and take the maximum/minimum value: N samp ∑ P ( g ≤ y ) = sup P ( g ( X λ ) ≤ y ) ≈ max P ( g ( X λ i ) ≤ y ) ≈ max ✶ g ( x k ) ≤ y · w k ( λ i ) , i = 1 ,..., N grid i = 1 ,..., N grid λ ∈ Λ k = 1 N samp ∑ P ( g ≤ y ) ≈ ✶ g ( x k ) ≤ y · w k ( λ i ) . min i = 1 ,..., N grid k = 1 Effort: N grid · N samp reweightings, N samp expensive function evaluations of g . Th.Fetz, M. Oberguggenberger Imprecise random variables, random sets, and Monte Carlo simulation ISIPTA’15, Pescara, Italia 7 / 10

  10. Simulation of a random set X 1 Propagation of a random set through g G ( ω ) = g ( X ( ω )) = { g ( X λ ( ω ))) : λ ∈ Λ } G ( ω ) = [ G ( ω ) , G ( ω )] random interval G ( ω ) = min g ( X ( ω )) , G ( ω ) = max g ( X ( ω )) 2 Cumulative distribution functions F ( y ) = � P ( g ≤ y ) , F ( y ) = P ( g ≤ y ) � � � � � F ( y )= P ( − ∞ , y ] ∩ [ G , G ] � = ∅ = P G ≤ y = F G ( y ) � � � � F ( y )= P [ G , G ] ⊂ ( − ∞ , y ] = P G ≤ y = F G ( y ) 3 Algorithm for computing F ( y ) Generate ω 1 ,..., ω N samp distributed as m. For each ω n , estimate G ( ω n ) ≈ min i g ( X λ i ( ω n )) using grid points λ 1 ,..., λ N grid on Λ . N samp 1 F ( y ) ≈ ∑ ✶ G ( ω k ) ≤ 0 · N samp . k = 1 Effort: N grid · N samp expensive evaluations of g . Th.Fetz, M. Oberguggenberger Imprecise random variables, random sets, and Monte Carlo simulation ISIPTA’15, Pescara, Italia 8 / 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend