impact de gouttes talement splashes etc
play

Impact de gouttes: talement, splashes, etc Christophe Josserand - PowerPoint PPT Presentation

Impact de gouttes: talement, splashes, etc Christophe Josserand Institut DAlembert, CNRS - UPMC General motivations Why drop impacts? Numerous contexts from everyday - life situations to industrial applications large spatial


  1. Impact de gouttes: étalement, splashes, etc… Christophe Josserand Institut D’Alembert, CNRS - UPMC

  2. General motivations • Why drop impacts? • Numerous contexts from everyday - life situations to industrial applications • large spatial range: from ink - jet printers and nanojet to comets • typical applications: raindrop, atomisation, combustion chambers...

  3. Questions • what controls the splashing • what is the influence of the surrounding gas during impacts? • important in the «late» time dynamics, corolla, droplets, etc... • recently it has been shown to be crucial for the short time dynamics although it was usually neglected before.

  4. L. Xu , W .W . Zhang and S.R. Nagel, «Drop splashing on a dry smooth surface», Phys. Rev. Lett. 94, 184505 ( 2005 ) .

  5. Thoroddsen, S. T., Etoh, T. G. & Takehara, K., 2003, «Air entrapment under and impacting drop.» J. Fluid Mech. V ol. 478, 125 - 134.

  6. Also on solid surfaces. S.T. Thoroddsen, T.G. Etoh, K. Takehara, N. Ootsuka and Y . Hatsuki, "The air bubble entrapped under a drop impacting on a solid surface", J. Fluid Mech. 545, 203 - 212 ( 2005 ) .

  7. Numerical simulations of drop impacts ( DNS )

  8. GERRIS hints • 2 fluids incompressible Navier - Stokes equation with solid boundaries • VOF method ( PLIC interface reconstruction ) • Adaptive mesh refinement ( quad - oct - tress, dynamical ) • multigrid Poisson solver ρ ( ∂ u ∂ t + u · ∇ u ) = − ∇ p + µ ∆ u + σκδ s n

  9. Dimensionless numbers Re l = ρ l UD We = ρ l U 2 D µ l γ m = µ g r = ρ g A = e µ l ρ l D ρ l UD = m µ g Re g = ρ g UD St = Re l µ g

  10. Scaling arguments • as the drop impacts on the thin liquid sheets it decelerates: • first because of the air cushioning • then because of the liquid film • finally because the liquid film is thin • self - similar analysis at short time

  11. C R region Ia rJ O region II h region Ib r J region III r K

  12. √ At the bottom of the drop r ∼ Dz √ So that the impact radius follows r i ∼ DUt Mass flux inside the m ∼ δ ( 2 ρ l π r 3 i ) ∼ 2 πρ l r 2 δ ˙ i ˙ r i impact region δ t √ ν l tU j If this mass is transfered δ ˙ m ∼ 2 πρ l r i e j U j ∼ 2 πρ l r i into a viscous jet √ U j ∝ Re l U

  13. 10 0 10 -1 -0.5 ) 0.65(t'-t' 0 r' 10 -2 c 1/10 1/5 10 -3 1/3 1/2 1 2 Law 10 -4 10 -4 10 -3 10 -2 10 -1 10 0 10 1 t'-t' 0 1/10 1/5 Law 0.22(t'-t' 0 ) -0.5 P c P' 10 0 10 -1 10 -3 10 -2 10 -1 10 0 t'-t' 0

  14. V alidity of the scaling theory? • condition for the jet to emerge: • has to win against capillary e ff ect • has to go faster than the geometrical intersection • the air cushioning should perturb ( delay ) the whole dynamics

  15. Jet formation r γ Ut 1 U j � v TC v TC = D � ρ l e j Re l · We 2 Ut D � 1 U j � ˙ r i Re l

  16. Air cushioning ✓ ◆ ∂ h ∂ rh 3 ∂ p 1 Lubrication regime ∂ t = ∂ r ∂ r 12 µr P iner ∼ δ ˙ mU P lub ∼ µD ∼ ρ l U ˙ r i π r 2 Ut 2 i P iner ∼ P lub → Ut D ∝ St 2 / 3

  17. Surrounding gas e ff ects? • compressibility? • bubble entrapment • moving contact line - air entrapment • aerodynamical instability

  18. • can the initial liquid - solid contact trigger the splash? • simplified model coupling inviscid flow in the drop with lubrication equation in the gas ( S. Mandre, M. Mani, and M. P . Brenner. Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett., 102, 2009 ) . • In this 2D version, a finite time singularity is observed in the no surface tension case. With surface tension, the singularity disappears and the capillary waves look as precursors of the jets. • Problem: alone, it cannot explain the experiment!

  19. Model: set of equations U = ( u r , u z ) = ~ ~ ∇ϕ ( r , z , t ) ∆ϕ = 0 We = ρ U 2 D σ ∂ h ∂ t = ∂ϕ ∂ z − ∂ϕ ∂ h ∂ r , ∂ r η St = ρ VR ∂ϕ ∂ t + 1 2 ∇ϕ 2 + p + 1 We κ = 0 ∂ h ∂ r ( rh 3 ∂ p ∂ 1 ∂ t = ∂ r ) 12 rSt

  20. No surface tension: finite time singularity 0.002 0.0015 0.001 h 0.0005 0 0 0.02 0.04 0.06 0.08 0.1 r

  21. Singuarity properties • minimal air gap hmin ( t ) vanishes • maximal pressure Pmax ( t ) diverges • maximal curvature Kmax diverges • Pmax and hmin are not at the same location although they merge at the singularity • the peak moves at a constant radial velocity

  22. 1000 pmax curvature 100 pmax, curv-max 10 1 0.1 1e-05 0.0001 0.001 hmin − 1 κ max ∝ h − 2 2 p max ∝ h min min

  23. Singularity: self - similar analysis p ( r , t ) = p 0 ( t ) P ( R ) h ( r , t ) = h 0 ( t ) H ( R ) ϕ ( r , z , t ) = ϕ 0 ( t ) Φ ( R , Z ) R = r − r 0 ( t ) Moving frame: l ( t ) z Z = l ( t )

  24. 2 regimes h 0 ∼ St 4 / 3 Crossover for h 0 ( t ) ⌧ l ( t ) l ( t ) ⌧ h 0 ( t )

  25. E ff ect of surface tension • should «regularize» the singularity • capillary waves • does the liquid «touch» the substrate? • viscous film pinch - o ff : no finite time singularity! • liquid viscosity

  26. 1 ’markers.xmgr’ every :100 u 1:2 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1

  27. 1 ’markers.xmgr’ every :100 u 1:2 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1

  28. 0.5 ’toto1’ ’toto2’ ’toto3’ 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1

  29. Kolinski et al, 2011

  30. Can we explain the air influence on the impact? • lubricated gas with inviscid liquid should not be enough! • compressibility? ( Mani,Mandre & Brenner 2009,2010, 2012 ) • surface forces? • 1 - rarefied gas limit? • 2 - gas inertia?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend