hypernuclei in halo cluster eft
play

Hypernuclei in halo/cluster EFT Shung-Ichi Ando Sunmoon University, - PowerPoint PPT Presentation

Hypernuclei in halo/cluster EFT Shung-Ichi Ando Sunmoon University, Asan, Republic of Korea arXiv:1512.07674 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 p. 1 Outline Singular potentials: Limit cycle and Efimov states in


  1. Hypernuclei in halo/cluster EFT Shung-Ichi Ando Sunmoon University, Asan, Republic of Korea arXiv:1512.07674 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 1

  2. Outline • Singular potentials: Limit cycle and Efimov states in three-body systems 4 ΛΛ H as ΛΛ d system in halo EFT • 6 • ΛΛ He as ΛΛ α system in cluster EFT • Summary 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 2

  3. Limit cycle • Three-body systems in unitary (asymptotic) limit • If an interaction is singular, the system exhibits cyclic singularities, so called limit cycle. • It is necessary to introduce a counter term for renormalization. • Efimov-like bound states Infinitely many three-body bound states (whose energies B ( n ) ) appear, for three-boson case, e − 2 π/s 0 � n − n ∗ � B ( n ) = κ 2 ∗ /m , where s 0 ≃ 1 . 00624 and e π/s 0 ≃ 22 . 7 . 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 3

  4. Halo/Cluster EFT • Effective Field Theories (EFTs) • Model independent approach • Separation scale • Counting rules • Parameters should be fixed by experiments • For the study of three-body systems the unitary limit can be chosen as a first approximation. 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 4

  5. 4 ΛΛ H at LO • ΛΛ d • 3 Λ H, B Λ = 0 . 13 MeV • d , B 2 = 2 . 22 MeV • S -waves are considered at LO. • S = 0 : no limit cycle, one parameter γ Λ d , and we 4 find no bound state for ΛΛ H and a 0 = 16 . 0 ± 3 . 0 fm for Λ - 3 Λ H scattering. 4 • S = 1 : ΛΛ H shows a limit cycle, three parameters, a ΛΛ , γ Λ d , g 1 (Λ c ) , and the three-body interaction is fixed by using the results of the potential models. 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 5

  6. Two-body part: ΛΛ in 1 S 0 state • Dressed dibaryon propagator = + + + ... • Renormalized dressed dibaryon propagator 4 π 1 D s ( p 0 , � p ) = . m Λ y 2 � 1 − m Λ p 0 + 1 p 2 − iǫ s a ΛΛ − 4 � a ΛΛ = − 1 . 2 ± 0 . 6 fm , from 12 C( K − , K + ΛΛ X ) reaction [Gasparyan et al. , PRC85(2012)015204]. 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 6

  7. Two-body part: Λ d in 3 Λ H channel • Dressed 3 Λ H propagator = + + + ... • Renormalized dressed 3 Λ H propagator 2 π 1 D t ( p 0 , � p ) = � , µ Λ d y 2 � � t 1 p 2 γ Λ d − − 2 µ Λ d p 0 − 2( m Λ + m d ) � with � γ Λ d = 2 µ Λ d B Λ . 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 7

  8. Three-body part: S = 1 channel = + + + + = + K ( a ) ( p, k ; E ) − g 1 (Λ c ) a ( p, k ; E ) = Λ 2 c � Λ c � � � � − 1 K ( a ) ( p, l ; E ) − g 1 (Λ c ) 1 dll 2 l 2 ,� D t E − l a ( l, k ; E ) 2 π 2 Λ 2 2 m Λ 0 c � Λ c − 1 � 1 � l 2 ,� dll 2 K ( b 1) ( p, l ; E ) D s E − l b ( l, k ; E ) , 2 π 2 2 m d 0 b ( p, k ; E ) = K ( b 2) ( p, k ; E ) � Λ c − 1 � 1 � l 2 ,� dll 2 K ( b 2) ( p, l ; E ) D t E − l a ( l, k ; E ) , 2 π 2 2 m Λ 0 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 8

  9. where   p 2 + l 2 + 2 µ Λ d  − 2 µ Λ d E m d y 2 m d t  , K ( a ) ( p, l ; E ) = ln p 2 + l 2 − 2 µ Λ d 6 pl − 2 µ Λ d E m d � p 2 + 2 µ Λ d l 2 + pl − m Λ E m Λ � � 2 m Λ y s y t K ( b 1) ( p, l ; E ) = ln , − p 2 + m Λ 2 µ Λ d l 2 − pl − m Λ E 3 2 pl 2 µ Λ d p 2 + l 2 + pl − m Λ E m Λ � � � 2 m Λ y s y t K ( b 2) ( p, l ; E ) = ln . − 2 µ Λ d p 2 + l 2 − pl − m Λ E m Λ 3 2 pl 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 9

  10. Evaluation formula for the limit cycle • In the asymmetric limit, there is no scale in the integral equations. The scale invariance suggests that the power-law behavior for the amplitude a ( p ) ∼ p − 1+ s . • After Mellin transformations we have 1 = C 1 I 1 ( s ) + C 2 I 2 ( s ) I 3 ( s ) . • It has imaginary solutions for s , s = ± is 0 , s 0 = 0 . 4492 · · · , and thus e π/s 0 ≃ 1 . 09 × 10 3 . 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 10

  11. • Evaluation formula for the limit cycle (for the ΛΛ d system) 1 = C 1 I 1 ( s ) + C 2 I 2 ( s ) I 3 ( s ) , with √ � µ Λ(Λ d ) √ m Λ µ d (ΛΛ) µ Λ(Λ d ) 1 m d 2 C 1 = , C 2 = , 3 π 2 µ 3 / 2 6 π µ Λ d µ Λ d Λ d where µ d (ΛΛ) = 2 m Λ m d / (2 m Λ + m d ) , and sin[ s sin − 1 � 1 � 2 a ] 2 π I 1 ( s ) = , � π � s cos 2 s sin[ s cot − 1 � √ 4 b − 1 � ] 2 π 1 I 2 ( s ) = , � π b s/ 2 � s cos 2 s s b s/ 2 sin[ s cot − 1 � √ 4 b − 1 � ] 2 π I 3 ( s ) = , � π � cos 2 s and a = 2 µ Λ d m Λ and b = 2 µ Λ d . m d 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 11

  12. Numerical results: S = 1 channel • With g 1 (Λ c ) , ( B ΛΛ , a ΛΛ ) = (I) ( 0 . 2 MeV, − 0 . 5 fm), (II) ( 0 . 6 , − 1 . 5 ), (III) ( 1 . 0 , − 2 . 5 ). 20 (I) (II) 15 (III) 10 5 g 1 ( Λ c ) 0 -5 -10 -15 -20 10 1 10 2 10 3 10 4 10 5 10 6 Λ c (MeV) 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 12

  13. Numerical results: S = 1 channel 1.2 Λ c = 300 MeV 1.1 = 150 MeV 1 = 50 MeV (II), (III) 0.9 0.8 ΛΛ (MeV) 0.7 0.6 B 0.5 0.4 0.3 0.2 0.1 0.5 1 1.5 2 2.5 3 3.5 -a ΛΛ (fm) 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 13

  14. 6 ΛΛ He at LO • ΛΛ α ( S = 0 ) • 5 Λ He, B Λ ≃ 3 MeV • First excited energy of α , B 1 ≃ 20 MeV • The limit cycle appears, three parameters, a ΛΛ , γ Λ α , g (Λ c ) , at LO, and the three-body interaction is fixed by using the Nagara event, B ΛΛ ≃ 6 . 93 MeV 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 14

  15. Numerical results: • With g (Λ c ) (Input: B ΛΛ = 6.93MeV) 10 a ΛΛ = -1.8 fm = -1.2 fm = -0.6 fm 5 g( Λ c ) 0 -5 -10 100 1000 10000 100000 Λ c (MeV) Λ n = Λ 0 exp( nπ/s 0 ) , s 0 ≃ 1 . 05 , exp( π/s 0 ) ≃ 19 . 9 . 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 15

  16. Numerical results: • Without g (Λ c ) 12 a ΛΛ = - 1.8 fm = - 1.2 fm 11 = - 0.6 fm 10 9 ΛΛ (MeV) 8 7 B 6 5 4 300 350 400 450 500 550 600 650 Λ c (MeV) 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 16 • r c = Λ − 1 ≃ 0 . 35 to 0 . 5 fm.

  17. Numerical results: • With g (Λ c ) (Input: B ΛΛ = 6.93MeV, a ΛΛ = − 0.5fm) 14 Λ c = 430 MeV 13 = 300 MeV = 170 MeV 12 Potential models 11 ΛΛ (MeV) 10 9 B 8 7 6 5 -3 -2.5 -2 -1.5 -1 -0.5 0 1/a ΛΛ (fm -1 ) [Filikhin and Gal, NPA707,491(2002)] 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 17

  18. Summary • Halo/cluster EFTs at LO for the light hypernuclei are constructed. • Those three-body systems described by means of EFTs at LO exhibit a limit cycle in the asymptotic limit which implies the formation of bound states. • For more conclusive results, we need to have the exp. data and include higher order corrections. • We have applied the present approach to the study of nn Λ system [SIA, Raha, Oh, PRC92(2015)024325] . 31st Reimei workshop, JAEA, Tokai, Japan, Jan. 18-20, 2016 – p. 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend