h lder regularity of certain non solvable groups
play

Hlder regularity of certain non-solvable groups Sang-hyun Kim - PowerPoint PPT Presentation

Hlder regularity of certain non-solvable groups Sang-hyun Kim (KIAS, Korea) Thomas Koberda (UVa, US) and Cristbal Rivas (USACH, Chile) Teichmller Theory: Classical, Higher, Super and Quantum CIRM Luminy, October 8, 2020 Critical


  1. Hölder regularity of certain non-solvable groups Sang-hyun Kim (KIAS, Korea) Thomas Koberda (UVa, US) and Cristóbal Rivas (USACH, Chile) Teichmüller Theory: Classical, Higher, Super and Quantum CIRM — Luminy, October 8, 2020

  2. Critical regularity of a group 1 ≤ r < s ⟹ Di ff r + ( I ) ≥ Di ff s + ( I ) : compact interval I (K.—Koberda 2020) G r ≤ Di ff r 1 ≤ r ⟹ ∃ f.g. such that + ( I ) Di ff k C k + ( I ) = { f : I → I | f is —diffeo, f ′ > 0} . ↪ Di ff s for all . G r / + ( I ) s > r analysis ⟹ group theory Di ff k + τ + ( I ) ∣ f ( k ) + ( I ) = { f ∈ Di ff k is —Hölder con } τ Rigidity g : I → ℝ Study representations of Γ → G is —Hölder continuous if τ | gx − gy | Γ for a “lattice” and a topological group . G < ∞ . [ g ] τ := sup [ g ] 1 := [ g ] Lip | x − y | τ Definition (critical regularity) x ≠ y CritReg ( G ) := sup{ r ≥ 0 | G ↪ Di ff r + ( I )} + ( I ) ≠ Di ff k +Lip Di ff k +1 cf. . ( I ) + (Deroin—Kleptsyn—Navas 2007) Theme G ≤ Homeo + ( I ) G ∼ If is countable, then biLip. Di ff r Which f.g. groups arise as subgps of ? + ( I ) ( G ) ≥ 1 = − ∞ i.e. CritReg or .

  3. Motivation from the foliation theory Definition (critical regularity) { π 1 ( B ) → Di ff r ( F ) }/ conj . CritReg ( G ) := sup{ r ≥ 0 | G ↪ Di ff r + ( I )} { C r foliated B -bundles over F }/ isom . ↭ B × F ) / ( x , t ) ∼ ( g . x , ρ ( g ) . t ) ∀ g ∈ π 1 ( B ) ρ ↭ F → ( ˜ ↓ B Thurston Stability (1974) cpt cnt transver. orientable ( M n , ℱ ) C 1 codimension-one foliation W. Thurston H 1 ( L ; ℝ ) = 0 w/ a cpt leaf s.t. L (1946-2012) ⟹ L → M → S 1 M ≅ L × I or .

  4. Motivation from the foliation theory Thurston Stability Lemma (1974) Thurston Stability (1974) Di ff 1 [0,1) is locally indicable. cpt cnt transver. orientable ∀ 1 ≠ H f.g. ≤ Di ff 1 [0,1) ( M n , ℱ ) ℤ . i.e. surjects onto C 1 codimension-one foliation H 1 ( L ) = 0 ⇒ ∀ ρ : π 1 ( L ) → Di ff 1 [0,1) e.g. is trivial. W. Thurston H 1 ( L ; ℝ ) = 0 w/ a cpt leaf s.t. L (1946-2012) π 1 ( M SFS ) = ⟨ a , b , c ∣ a 2 = b 3 = c 7 = abc ⟩ e.g. ⟹ P . Kropholler ≤ ˜ PSL(2, ℝ ) ≤ Homeo + ( I ) W. Thurston L → M → S 1 M ≅ L × I or . ↪ Di ff 1 π 1 ( M SFS ) / Not locally indicable: . + ( I ) C 0 C 1 M × S 1 f , but not , foliation on . (Plante—Thurston 1976) Di ff 2 ∀ nilpotent subgroup of is abelian. + ( I ) (Farb–Franks 2003) Di ff 1 ∀ f.g. (res.) tor-free nilpotent gp embeds into . + ( I )

  5. CritReg: non-exponential growth groups Definition (critical regularity) Heisenberg group CritReg ( G ) := sup{ r ≥ 0 | G ↪ Di ff r + ( I )} Heis = N 3 ≤ Di ff 1 + ( I ) (Plante—Thurston 1976) (Castro—Jorquera—Navas 2014) Di ff 2 Heis ↪ Di ff 2 − ϵ ∀ nilpotent subgroup of is abelian. + ( I ) , i.e. CritReg + ( I ) ( Heis ) = 2 (Farb–Franks 2003) (Jorquera—Navas—Rivas 2017) Di ff 1 N 4 ↪ Di ff 1.5 − ϵ ↪ Di ff 1.5+ ϵ ∀ f.g. (res.) tor-free nilpotent gp embeds into . + ( I ) , but , ( I ) / ( I ) + + i.e. CritReg ( N 4 ) = 1.5 (Navas 2008) : intermediate growth G ↪ Di ff 1+ τ ⟹ G / for + ( I ) τ > 0. ↪ Di ff 1 Moreover, Grigorchuk—Machi group + ( I )

  6. CritReg: more examples (Witte ’94; Burger–Monod ’99, Ghys ’99) Heisenberg group ↪ Di ff 1 + ( S 1 ) higher-rank lattice / Heis = N 3 ≤ Di ff 1 + ( I ) (Navas ’02 / Bader–Furman–Gelander–Monod ’07) (Castro—Jorquera—Navas 2014) Heis ↪ Di ff 2 − ϵ , i.e. CritReg + ( I ) ( Heis ) = 2 ↪ Di ff 1.5 + ( S 1 ) Property T group / (Jorquera—Navas—Rivas 2017) (Brown–Fisher–Hurtado) d > n N 4 ↪ Di ff 1.5 − ϵ ↪ Di ff 1.5+ ϵ , but , ( I ) / ( I ) + + + ( X n − manifold ) ↪ Di ff 1 rank-d lattice / i.e. CritReg ( N 4 ) = 1.5 (Navas 2008) : intermediate growth G ↪ Di ff 2 (Farb–Franks ’01) Mod(S g ≥ 3,p ≤ 1 ) / + ( M ) ↪ Di ff 1+ τ ⟹ G / for + ( I ) τ > 0. 3 g − 3 + p ≤ 1 ⟺ (Baik–K–Koberda ’16) ↪ Di ff 1 Moreover, Grigorchuk—Machi group + ( I ) Mod( S g , p ) ↪ Di ff 2 , virtually. + ( M )

  7. CritReg: exponential growth groups? Thompson’s group F Question 2 ℤ : PL homeo of [0,1] w/ dyadic breakpts & slopes F Are there exponential growth examples? PPSL(2, ℤ ) (Thurston, using -representation) C 1 (for -smooth groups) F ↪ Di ff 1 Thompson’s group . + [0,1] (Ghys—Sergiescu 1987) Di ff ∞ F ↪ PL[0,1] is conjugate into + [0,1] ( F ) = ∞ In particular, CritReg . (K—K—Lodha 2019) ∀ N ≫ 0 < f N , g N > ≅ F , . f “two-chain” g

  8. Right-angled Artin groups Γ : finite simplicial graph. Question Are there exponential growth examples? Γ The RAAG ( right-angled Artin group ) on is: C 1 (for -smooth groups) A ( Γ ) := < V ( Γ ) | [ a , b ] = 1 ∀ { a , b } ∈ E ( Γ ) > A ( △ ) ≅ ℤ 3 e.g. A ( ∴ ) ≅ F 3 A ( ∙ − ∙ − ∙ ) ≅ F 2 × ℤ (Agol, Wise 2012) ∀ ↪ ∃ A ( Γ ) fin. vol. hyp. 3-mfd gp virtually S 2 → E ∀ A ( Γ ) ↪ Symp( S 2 ) (M. Kapovich) ↓ M hyp,3 (Baik—K—Koberda 2019) ↪ Di ff 2 + ( I or S 1 ) A ( ∙ − ∙ − ∙ − ∙ ) / . ↪ Di ff 2 + ( I or S 1 ) Cor (BKK) Mod( Σ g , p ) virtually ⟺ 3 g − 3 + p ≤ 1.

  9. Right-angled Artin groups ⟹ A ( Γ ) ≤ Di ff 1 (FF2003) . + ( I ) (K—Koberda 2018) Γ : finite simplicial graph. A ( ∙ − ∙ − ∙ ∙ ) A ( Γ ) ↪ Di ff 2 + ( I ) ⟺ ( F 2 × ℤ ) * ℤ / ↪ A ( Γ ) Γ The RAAG ( right-angled Artin group ) on is: ⟺ A ( Γ ) ↪ Di ff ∞ A ( Γ ) := < V ( Γ ) | [ a , b ] = 1 ∀ { a , b } ∈ E ( Γ ) > + ( I ) A ( △ ) ≅ ℤ 3 e.g. A ( ∴ ) ≅ F 3 ( A ( Γ )) ∈ [1,2] = ∞ CritReg or A ( ∙ − ∙ − ∙ ) ≅ F 2 × ℤ Question (Agol, Wise 2012) ( A ( Γ )) = ? (1) CritReg ∀ ↪ ∃ A ( Γ ) fin. vol. hyp. 3-mfd gp virtually (( F 2 × ℤ ) * ℤ ) = ? (2) CritReg S 2 → E ∀ A ( Γ ) ↪ Symp( S 2 ) (M. Kapovich) ↓ M hyp,3 (Baik—K—Koberda 2019) ↪ Di ff 2 + ( I or S 1 ) A ( ∙ − ∙ − ∙ − ∙ ) / . ↪ Di ff 2 + ( I or S 1 ) Cor (BKK) Mod( Σ g , p ) virtually ⟺ 3 g − 3 + p ≤ 1.

  10. Right-angled Artin groups Theorem A (K—Koberda—Rivas) Question If and are non-solvable, G H ( A ( Γ )) = ? (1) CritReg ↪ Di ff 1+ τ ( G × H ) * ℤ / then for all + ( I ) τ > 0. (( F 2 × ℤ ) * ℤ ) = ? (2) CritReg h t w o r g l a i Cor CritReg (( F 2 × F 2 ) * ℤ ) = 1. t n e n A ( ∙ − ∙ − ∙ ∙ ) o p x e ( F * ℤ ) = 1. CritReg F × F ↪ F Theorem B (K—Koberda—Rivas) ↪ Di ff 1 F * ℤ / . + ( I ) (Navas) ↪ Di ff 1 ( BS (1,2) × ℤ ) * ℤ / + ( I )

  11. Overlapping actions Theorem A (K—Koberda—Rivas) f ∈ Homeo( X ) ⇝ supp f := X ∖ Fix f If and are non-solvable, G H G ≤ Homeo( X ) ⇝ supp G := ∪ g ∈ G supp g ↪ Di ff 1+ τ ( G × H ) * ℤ / then for all + ( I ) τ > 0. Theorem B (K—Koberda—Rivas) The —Lemma (K—Koberda 2018) abt ↪ Di ff 1 F * ℤ / . + ( I ) a , b , t ∈ Di ff 1 + ( I or S 1 ) If satisfy hidden relations! ∃ supp a ∩ supp b = Ø , ⟨ a , b , t ⟩ ≇ ( ℤ × ℤ ) * ℤ then . : overlapping action K * ℤ ↪ Di ff 1 , K + ( I ) ⟹ supp a ∩ supp b ≠ Ø for all a , b ∈ K Theorem C (K—Koberda—Rivas) G × H ≤ Di ff 1+ τ k ≫ 0, If and + ( I ) supp G ( k ) ∩ supp H ( k ) = Ø then .

  12. Overlapping actions Theorem C ⟹ Theorem A ( G × H ) * ℤ ↪ Di ff 1+ τ Spse for some . + ( I ) τ > 0 K * ℤ ↪ Di ff 1 , + ( I ) G × H ≤ Di ff 1+ τ Then , overlapping. + ( I ) ⟹ supp a ∩ supp b ≠ Ø for all a , b ∈ K G ( k ) = 1 H ( k ) = 1 □ Theorem C implies or . Theorem A (K—Koberda—Rivas) If and are non-solvable, Theorem (Brum—Matte Bon—Rivas—Triestino) G H ↪ Di ff 1+ τ C 1 then ( G × H ) * ℤ / for all Every faithful —action of on is + ( I ) τ > 0. F I semiconjugate to the standard action. Theorem B (K—Koberda—Rivas) ↪ Di ff 1 F * ℤ / . + ( I ) Proof of Theorem B Theorem C (K—Koberda—Rivas) C 1 Show that a —blow-up of the standard action G × H ≤ Di ff 1+ τ k ≫ 0, If and + ( I ) □ of is non-overlapping. F supp G ( k ) ∩ supp H ( k ) = Ø then .

  13. Conradian action and (k,1)—nesting (Navas 2008) : intermediate growth G Theorem C (K—Koberda—Rivas) ⟹ No rank-two free semigroup in G G × H ≤ Di ff 1+ τ k ≫ 0 If and , n + ( I ) ⟹ No two-chain of supporting intervals o i t c a n a i d a r n supp G ( k ) ∩ supp H ( k ) = Ø o C C 1+ τ then . ⟹ no faithful —action (cf. Navas 2008, Deroin—Kleptsyn—Navas 2007 Castro—Jorquera—Navas 2014) “two-chain” G ( k ) ≠ 1 G ≤ Homeo + ( ℝ ) (1) , Conradian, ” e r u t c u c ∈ Z ( G ) Fix c = Ø , r t s l e v e L “ ≈ , ≠ ∃ ( k ,1) —nesting ⟹∃ ( k ,1) —nesting. ∃ g i J i − 1 J i g i J i For all i = 2,.., k

  14. Conradian action and (k,1)—nesting G ≤ Di ff 1+ τ (2) + ( I ) ∃ ( k ,1) , —nesting ⟹ τ (1 + τ ) k − 2 ≤ 1 (cf. Navas 2008, Deroin—Kleptsyn—Navas 2007 . Castro—Jorquera—Navas 2014) Smoother diffeomorphisms are slower! G ( k ) ≠ 1 G ≤ Homeo + ( ℝ ) (1) , Conradian, ” e f r u J t c u r c ∈ Z ( G ) Fix c = Ø , t s l e v f ( x ) e x L “ ≈ , ≠ ⟹∃ ( k ,1) —nesting, i.e. | f ( x ) − x | ≤ [ f ( k ) ] τ | J | k + τ J 1 cJ 1 J 2 cJ 2 ⋮ ⋮ J k cJ k ∃ g i J i − 1 J i g i J i For all i = 2,.., k g i

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend