graphon estimation minimax rates and posterior contraction
play

Graphon Estimation: Minimax Rates and Posterior Contraction Chao Gao - PowerPoint PPT Presentation

Graphon Estimation: Minimax Rates and Posterior Contraction Chao Gao Yale University @Leiden, March 2015 Stochastic Block Model z : { 1 , 2 , ..., n } ! { 1 , 2 , ..., k } A ij Bernoulli( ij ) ij = Q z ( i ) z ( j ) Goal: recover ij


  1. Graphon Estimation: Minimax Rates and Posterior Contraction Chao Gao Yale University @Leiden, March 2015

  2. Stochastic Block Model z : { 1 , 2 , ..., n } ! { 1 , 2 , ..., k } A ij ⇠ Bernoulli( θ ij ) θ ij = Q z ( i ) z ( j ) Goal: recover θ ij

  3. Biclustering (Hartigan, 1972) z 1 : { 1 , 2 , ..., n } ! { 1 , 2 , ..., k } z 2 : { 1 , 2 , ..., m } ! { 1 , 2 , ..., l } E ( A ij ) = θ ij = Q z 1 ( i ) z 2 ( j ) Goal: recover θ ij

  4. Nonparametric Regression y i = f ( x i ) + ✏ i x i 2 D , ✏ i ⇠ N (0 , 1) 2 D ⇠ Common assumption: f is smooth on D . Goal: recover f from both x and y

  5. A More Challenging Problem y i = f ( x i ) + ✏ i x i 2 D , ✏ i ⇠ N (0 , 1) 2 D ⇠ Common assumption: f is smooth on D . Goal: recover f from only y

  6. • 1D Problem • 2D Problem • Minimax Rate for Stochastic Block Model • Minimax Rate for Graphon Estimation • Adaptive Bayes Estimation

  7. 1D Problem x i = i y i = f ( x i ) + ✏ i , i = 1 , 2 , .., n n, n o F = f : f ( x ) = q 1 for x 2 (0 , 1 / 2] , f ( x ) = q 2 for x 2 (1 / 2 , 1] n ! 1 ⇣ 1 ( ˆ X f ( x i ) � f ( x i )) 2 inf sup n. E n ˆ f f ∈ F i =1

  8. 1D Problem x i = i y i = f ( x i ) + ✏ i , i = 1 , 2 , .., n n, Without observing x , the problem is equivalent to y i = ✓ i + ✏ i . Θ = { ✓ : half ✓ i is q 1 , half ✓ i is q 2 } n ! 1 (ˆ X ✓ i � ✓ i ) 2 inf sup ⇣ 1 . E n ˆ θ θ ∈ Θ i =1

  9. 2D Problem ⇠ i = i y ij = f ( ⇠ i , ⇠ j ) + ✏ ij , n, i, j = 1 , 2 , .., n F collects f such that  q 1 ( x, y ) 2 [0 , 1 / 2) ⇥ [0 , 1 / 2)         q 2 ( x, y ) 2 [0 , 1 / 2) ⇥ [1 / 2 , 1]   f ( x, y ) = q 3 ( x, y ) 2 [1 / 2 , 1] ⇥ [0 , 1 / 2)         q 4 ( x, y ) 2 [1 / 2 , 1] ⇥ [1 / 2 , 1]  

  10. 2D Problem 0 1 @ 1 A ⇣ 1 ( ˆ X f ( ⇠ i , ⇠ j ) � f ( ⇠ i , ⇠ j )) 2 inf sup n 2 . E n 2 ˆ  f f ∈ F 1 ≤ i,j ≤ n F How about without knowing the design? 0 1 @ 1 A ⇣ 1 X ( ˆ f ( ⇠ i , ⇠ j ) � f ( ⇠ i , ⇠ j )) 2 inf sup n. E n 2 ˆ f f ∈ F 1 ≤ i,j ≤ n

  11. 2D Problem Let θ ij = f ( ξ i , ξ j ). Does θ ij have any structure? { θ i 1 , θ i 2 , ..., θ in } are from the same row for each i . { θ 1 j , θ 2 j , ..., θ nj } are from the same column for each j .

  12. 2D Problem ⇠ ij 2 [0 , 1] 2 , y ij = f ( ⇠ ij ) + ✏ ij , i, j = 1 , 2 , .., n { } Without knowing the design? 0 1 @ 1 ( ˆ X f ( ⇠ ij ) � f ( ⇠ ij )) 2 A ⇣ 1 . inf sup E n 2 ˆ f f ∈ F 1 ≤ i,j ≤ n

  13. Stochastic Block Model A ij ⇠ Bernoulli( ✓ ij ) n o Θ 2 = θ : θ ij = Q z ( i ) z ( j ) , with z : [ n ] ! [2] 0 1 @ 1 A ⇣ 1 (ˆ X ✓ ij � ✓ ij ) 2 inf sup n. E n 2 ˆ θ θ ∈ Θ 2 1 ≤ i,j ≤ n

  14. Stochastic Block Model A ij ⇠ Bernoulli( ✓ ij ) n o Θ k = θ : θ ij = Q z ( i ) z ( j ) , with z : [ n ] ! [ k ] Theorem 1.1. Under the stochastic block model, we have 8 9 ; ⇣ k 2 1 n 2 + log k < = (ˆ X θ ij � θ ij ) 2 inf sup , E n 2 n ˆ θ θ ∈ Θ k : i,j ∈ [ n ] for any 1  k  n .

  15. Stochastic Block Model n Let k ⇣ n δ , for δ 2 [0 , 1]. 8 n − 2 δ = 0 , k = 1 , > > > > > > > n − 1 > δ = 0 , k > 1 , k 2 > n 2 + log k < ⇣ n n − 1 log n δ 2 (0 , 1 / 2] , > > > > > > > n − 2(1 − δ ) > δ 2 (1 / 2 , 1] . > :

  16. Graphon Estimation Theorem (Aldous-Hoover) . A random array { A ij } is jointly exchangeable in the sense that { A ij } d = { A � ( i ) � ( j ) } for all permutation � , if and only if it can be represented as follows: there is a random function F : [0 , 1] 3 ! R such that d = F ( ⇠ i , ⇠ j , ⇠ ij ) , A ij where { ⇠ i } and { ⇠ ij } are i.i.d. Unif [0 , 1] .

  17. Graphon Estimation ⇣ 2 When the graph is undirected and has no self-loop, A ij | ξ i , ξ j ⇠ Bernoulli( θ ij ) , θ ij = f ( ξ i , ξ j ) . ξ i ⇠ Unif(0 , 1) i.i.d. 2 Goal: recover f .

  18. Graphon Estimation A ij | ξ i , ξ j ⇠ Bernoulli( θ ij ) , θ ij = f ( ξ i , ξ j ) . ( ξ 1 , ..., ξ n ) ⇠ P ξ Assumption: f 2 F α ( M ). older class F α ( M ) , defined in Section 2.3. We have Theorem 1.2. Consider the H¨ 8 9 n − 2 α ( α +1 , 0 < α < 1 , 1 < = (ˆ X θ ij � θ ij ) 2 inf sup sup E ; ⇣ n 2 log n ˆ n , α � 1 . θ ξ ∼ P ξ f ∈ F α ( M ) : i,j ∈ [ n ] The expectation is jointly over { A ij } and { ξ i } .

  19. Graphon Estimation Proof: ⇢ 1 k 2 α + k 2 � n 2 + log k min n k

  20. Lower Bound Proof When 1 < k  O (1), the minimax rate is 1 n .  Su ffi cient to prove for k = 2.

  21. Lower Bound Proof Proposition (Fano) . Let ( Θ , ⇢ ) be a metric space and { P ✓ : ✓ 2 Θ } a collection of probability measures. For any T ⇢ Θ , denote by M ( ✏ , T, ⇢ ) the ✏ -packing number of T w.r.t. ⇢ . Define the KL diameter of T by d KL( T ) = sup D ( P ✓ || P ✓ 0 ) . ✓ , ✓ 0 2 T Then ✏ 2 1 � d KL( T ) + log 2 ✓ ◆ E ✓ ⇢ 2 ⇣ ⌘ ˆ inf sup ✓ ( X ) , ✓ � sup 4 log M ( ✏ , T, ⇢ ) ˆ ✏ > 0 ✓ ✓ 2 Θ

  22. Lower Bound Proof • Construct a subset • Upper bound the KL-diameter • Lower bound the packing number

  23. Lower Bound Proof ( { ✓ ij } ∈ [0 , 1] n ⇥ n : ✓ ij = 1 2 for ( i, j ) ∈ ( S × S ) ∪ ( S c × S c ) , = T ) ✓ ij = 1 c √ n for ( i, j ) ∈ ( S × S c ) ∪ ( S c × S ) , with some S ∈ S 2 + . 1 1 c S S 2 + p n 2 1 c 1 2 + p n S c S 2 S S c S S

  24. Lower Bound Proof ij ) 2 = 2 c 2 ⇢ 2 ( ✓ , ✓ 0 ) = 1 | I S � I S 0 | ( n � | I S � I S 0 | ) X ( ✓ ij � ✓ 0 . n 2 n n n 1  i,j  n 1 1 c S S 2 + p n 2 1 c 1 2 + p n S c S 2 S S c S S

  25. Lower Bound Proof Construct a subset: � T ⇢ Θ k � Upper bound the KL diameter || � 8 || ✓ − ✓ 0 || 2 ≤ 8 c 2 n. sup D ( P θ || P θ 0 ) ≤ sup � θ , θ 0 2 T θ , θ 0 2 T � Lower bound the packing number

  26. Lower Bound Proof Lower bound the packing number I − I S 0 | as the Hamming 1 4 n ≤ | I S − I S 0 | ≤ 3 s.t. o pick S 1 , ..., S N ⊂ S 4 n, ⇢ 2 ( ✓ , ✓ 0 ) = 2 c 2 � c 2 | I S � I S 0 | ( n � | I S � I S 0 | ) 8 n =: ✏ 2 . n n n M ( ✏ , T, ⇢ ) ≥ N ≥ exp( c 1 n )

  27. Lower Bound Proof 0 1 A � c 2 1 � 8 c 2 n + log 2 ✓ ◆ @ 1 & 1 X (ˆ ✓ ij � ✓ ij ) 2 inf sup n. E n 2 32 n c 1 n ˆ θ θ ∈ Θ 2 1 ≤ i,j ≤ n

  28. Upper Bound ∥ − ∥ Oracle solution When the clustering z is known, an obvious estimator 1 ˆ � for ( i, j ) ∈ z − 1 ( a ) × z − 1 ( b ) θ ij = A ij , | z − 1 ( a ) || z − 1 ( b ) | ( i,j ) ∈ z − 1 ( a ) × z − 1 ( b ) achieves the rate ∥ ˆ θ − θ ∥ 2 k 2 � � F ≤ O P .

  29. Upper Bound An equivalent form (least squares) Fixing the known z , then solve ∥ A − θ ∥ 2 min F θ θ ij = Q z ( i ) z ( j ) for some Q = Q T ∈ [0 , 1] k × k s.t. A natural estimator Solve ∥ A − θ ∥ 2 min F θ θ ij = Q z ( i ) z ( j ) for some Q = Q T ∈ [0 , 1] k × k s.t. and some z : { 1 , 2 , ..., n } → { 1 , 2 , ..., k } . k 2 + n log k ∥ ˆ θ − θ ∥ 2 � � F ≤ O P

  30. Bayes Estimation � D ( k 2 + n log k ) 1. Sample k ⇠ ⇡ . � � ⇡ ( k ) / exp 2. Sample z 2 { z : [ n ] ! [ k ] } . uniform 3. Sample Q ⇠ f . ? 4. Let ✓ ij = Q z ( i ) z ( j ) .

  31. Bayes Estimation � D ( k 2 + n log k ) 1. Sample k ⇠ ⇡ . � � ⇡ ( k ) / exp � � 2. Sample z 2 { z : [ n ] ! [ k ] } . uniform sdf ◆ k 2 Γ ( k 2 / 2) ✓ � k f ( Q ) = 1 3. Sample Q ⇠ f . Γ ( k 2 ) e � � k || Q || p ⇡ 2 4. Let ✓ ij = Q z ( i ) z ( j ) .

  32. Bayes Estimation Γ ( k 2 ) � D ( k 2 + n log k ) 1. Sample k ⇠ ⇡ . � � ⇡ ( k ) / Γ ( k 2 / 2) exp � � 2. Sample z 2 { z : [ n ] ! [ k ] } . uniform sdf ◆ k 2 Γ ( k 2 / 2) ✓ � k f ( Q ) = 1 3. Sample Q ⇠ f . Γ ( k 2 ) e � � k || Q || p ⇡ 2 4. Let ✓ ij = Q z ( i ) z ( j ) .

  33. Bayes Estimation � D ( k 2 + n log k ) 1. Sample k ⇠ ⇡ . � � ⇡ ( k ) / exp 2. Sample z 2 { z : [ n ] ! [ k ] } . uniform sdf ✓ λ k ◆ k 2 f ( Q ) = 1 e − λ k || Q || p π 3. Sample Q ⇠ f . 2 4. Let ✓ ij = Q z ( i ) z ( j ) .

  34. Bayes Estimation ✓ ◆ 2 π Theorem 1.3. Consider λ k = β n k for some constant β > 0 . Then 0 1 ✓ k 2 ◆ � @ 1 n 2 + log k ij ) 2 > M k 2 + n log k X A  exp � � C 0 � �� ( θ ij � θ ⇤ � A , E θ ∗ Π � n 2 n i,j for some constants M, C 0 > 0 .

  35. Reference Gao, Chao, Yu Lu, and Harrison H. Zhou. "Rate-optimal Graphon Estimation." arXiv preprint arXiv:1410.5837 (2014).

  36. Thank you

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend