geometric approximation using coresets
play

Geometric Approximation Using Coresets Pankaj K. Agarwal Department - PowerPoint PPT Presentation

Geometric Approximation Using Coresets Pankaj K. Agarwal Department of Computer Science Duke University


  1. Geometric Approximation Using Coresets Pankaj K. Agarwal Department of Computer Science Duke University

  2. � ✎ ✑ ✒ � ✓ ✔ ✕ ✖ ✍ ✑ ✍ ☞ ✎ ✗ ✄ ✚ ✛ ✎ ✓ ✔ ✕ ✖ ✍ � ✍ ☞ ✎ ✎ � ✆ ✁ ✌ ✁ ✆ ✝ ✞ ✟ ✠ ✞ ✡ ☛ ✞ ☞ ✆ � ✍ ✁ ✄ ✎ ✆ ✏ Kinetic Geometry : Set of moving points in ✂☎✄ Maintain the diameter (width, smallest enclosing disk) of . ✫ [A., Guibas, Hershberger, Veach] Diametral pair can change times Kinetic data structure with events ✫ Can we maintain the approximate diameter of more efficiently? Is there a small coreset s.t. ? ✍✙✘ ✫ Kinetic bounding box hierarchies? Geometric Approximation Using Coresets 1

  3. � ✍ ✆ ✆ ✳ ✘ ✎ ✏ ✁ ✄ ✛ ✣ ✤ � ✣ ✎ ✑ ✒ � ✣ ✤ ✍ ✑ ✎ ✍ � ✎ ✎ ✍ ✝✰ ✖ ✁ � ✆ ✣ ✤ ✍ ✍ ✎ ✟ ✕ ✦ ✧ � ✔★ ✕ ✩ ✬ ✪ ✫ ✖ Shape Fitting : Set of points in ✂✢✜ r r O ✫ Fit a cylinder through I Find a cylinder ✣✥✤ ✭✯✮ Optimal solution: [A., Aronov, ✁✲✱ Sharir] -approximation: ✫ Can we compute an -approximation of δ in linear time? Is there is a small coreset so that approximates ? ✣✴✤ Geometric Approximation Using Coresets 2

  4. � ✸ ✁ ✾ ✆ ✹ ✷ ✛ Geometry in Streaming Model t=1 t=2 t=3 t=4 ✫ An incoming stream of points in ✂✶✵ ✫ Maintain certain geometric/statistical measures of the input stream Diameter, smallest enclosing disk, -clustering ✫ Use space and processing time ✻✽✼ ✧✯✺ ✫ Much work done on maintaining a summary of 1D data ✫ Little work on multidimensional geometric data [A., Krishnan, Mustafa, Venkatasubramanian], [Hershberger, Suri], [Bagchi, Chaudhary, Eppstein, Goodrich] ✫ How much storage and processing time (per point) needed to maintain -approx of smallest disk enclosing ? Maintain a core set ! Geometric Approximation Using Coresets 3

  5. ❊ ❈ ❉ � ❉ ✚ ❉ ❆ ✿ ❅ ❉ ❉ ❅ ❉ ❈ ❆ ❈ ❈ ❋ ✛ ❑ ❅ ● � ❍ ✧ ❑ ■ ❉ ❉ ✹ ❈ ✟ ✍ � ✎ ❀ ▲ ✭ ✆ ❄ ✛ ✿ � ❅ ✒ � ✛ ✛ ❆ ❇ ❀ ❈ ❈ ❈ ✸ -Approximation and Random Sampling , : Set system (range space) ✫ ✰❁❀ ✒❃❂ : VC-dimension of -approximation if for all ✫ ✫ A random subset of size ❍❏■ is an -approximation of with high probability [Vapnik-Chervonenkis] ✫ Efficient deterministic algorithms for computing an -approximation [Matouˇ sek, Chazelle] Geometric Approximation Using Coresets 4

  6. � ❉ � ✍ ✎ ✆ ❅ ✖ ❉ ✛ ❊ ❆ ✕ � ❅ ✔ � ✓ ✆ ✓ ✔ ✕ ✖ ✍ ✍ ✛ ✎ ❀ � ▲ � ✆ � ❅ ✂ ✄ ✆ ✟ ✎ ▼ ❆ ❊ � ❉ ❆ ✆ ◆ ✆ ❅ ❅ -Approximations ✫ An -approximation is a coreset of in a combi- natorial sense : Set of points in is a disk : an -approximation of ✰❁❀ approximates is not a coreset of in a metric/geometric sense ✫ does not approximate A best-fit circle for does not approximate the best-fit circle for What about other sampling schemes? Geometric Approximation Using Coresets 5

  7. ✆ ✛ ✆ ✛ Unified Framework for Coresets ✫ Notion of coreset is problem specicific ✫ Is there a unified framework that constructs coresets for a wide class of problems? Random subset is an -approximation for a large class of range spaces! Easy to compute Define the notion of -kernel ✫ Core set for a wide class of problems Geometric Approximation Using Coresets 6

  8. � ✑ ❱ ✍ ❨ � ✛ � ✒ ✛ ✑ ❬ ✝ ✰ ❱ ❩ ✭ ✫ ✰ ✎ ✖ ❭ ▲ ✼ ❳ ✵ ❲ ❇ ❱ ✎ ✗ � ✰ ❱ ✍ ❨ ✎ ✛ ✚ ✔★ ✬ ✚ ❯ ❨ ❬ ❳ ✵ ❲ ❇ ❱ ❚ ❱ P ❙ P ❘ ◗ ✵ ✂ ✍ ✼ ✰ ✰ ❱ � ✬ ✎ ✟ ✖ ✫ ✪ ✝ ✕ -Kernels : Set of points in ω (u,Q) ❖✙P ω (u,S) u Directional width: For , ✭✥❩ -kernel: is an -kernel of if ✍✙✘ Geometric Approximation Using Coresets 7

  9. ✎ � ❛ ❜ � ❝ ✚ ✘ ✰ ✡ ✘ ❞ ✵ ▲ ❜ ❵ ✍ � ✎ ✎ � ✑ ✍ ✛ ❜ �❡ ❜ ✍ ✑ ✛ ✄ ✜ ❳ ✒ ✂ ✵ ✛ ❪ ❫ ✛ � ✘ ❴ ✛ ❳ ✵ ✻ ✼ ✾❵ ✵ ✛ ❴ ✘ ✡ ✁ ✄ Computing -Kernels Theorem A: [AHV, YAPV, Ch] , . We can compute an -kernel of of size in time . Lemma 1: affine transform s.t. ✫ Unit hypercube is the smallest box enclosing is fat ✫ is an -kernel of is an -kernel of ✫ Geometric Approximation Using Coresets 8

  10. ✾ ❳ ❴ ✛ ✵ ❳ ✜ ❵ ✄ � ▲ ✘ ❴ ✛ ✵ ✼ ❵ ✑ ✑ ❢ ❣ ❂ ❢ ✄ ✘ ❴ ✛ ✻ ✵ ❳ ✼ ✘ ✡ ✁ � ✘ ❞ ✵ ✘ ✛ ❪ ❫ ✚ ✛ ❝ ✁ ✰ ✘ ❴ ✛ ✻ ✵ ❳ ✼ ✾ ❵ ✄ ✡ Computing -Kernels Lemma 2: : Set of fat points in , . We can compute an -kernel of of size in time . Sketch: Algorithm in two phases ε ✫ Compute -size approximation B ✫ Draw a sphere of radius centered at origin q ✫ Draw a grid of size on ✫ For each grid point , select its nearest neigh- CH(Q) bor in (Suffices to compute approximate NN.) Geometric Approximation Using Coresets 9

  11. ♠ ♥ ✈ q s r r r s r r r ♦ ✇ ♠ q q ♠ s ✉ q ✉ q ♠ ✉ s r s ♣ r ♥ ♦ s ✈ ✛ r ✇ q r r s r t r ♦ ♣ ✇ t ♣ s ♣ ✇ ✉ ♥ ✈ ✇ ♣ q ♦ q s ♥ ♣ ✈ ✉ s ♦ q ♥ s ✈ r r r s r r r q ♠ q ♥ ♠ ♠ q ♣ r s r r r ♣ ♠ ✈ ✇ ✉ q ♠ q s ✇ r ♠ s q r r s r r r ✈ s q s r q r t t ♥ ✉ s ✉ ✉✈ ♦ t r ♣ ✈ ✇ q r r s r r r q r s q ♥ q ✛ ❤ ❫ ✐ ❫❥ ♣ ✉ s ✈ q ❦ r ❧ ♠ ❦ ❧ ♥ ❦ ❧ ♦ ❦ ❧ ♣ q r s ✈ ✈ ♠ ✈ ♣ s ♣ ✈ ♦ q ✈ t s ♥ t r q r s r r r ♦ ✈ ♦ ✉ ♣ s ♣ ♠ ♠ ♥ ♠ ♠ s ✈ t ♠ ✇ ✉ s ✉ q ♦ q s r r r s r r r q r r ✫ Computing Kernel Computation clustered cylinder sphere Input Type -kernels for Geometric Approximation Using Coresets Input Size on various synthetic inputs Kernel Size 10

  12. ⑤ ⑧ ⑧ ⑦ ⑤ ⑩ ⑤ ⑦ ④ ④ ④ ⑤ ⑦ ⑤ ⑩⑧ ⑦ ④ ❶ ⑤ ④ ⑤ ⑤ ⑤ ⑤ ⑥ ⑤ ⑩ ⑦ ■ ⑦ ❷ ❶ ② ⑩ ⑩ ⑤ ⑤⑧ ■ ⑩ ⑦ ⑤ ④ ⑤ ⑦ ⑤ ⑤ ③ ⑦ ⑤ ⑤ ⑤ ⑤ ④ ⑦ ⑤ ⑤⑧ ⑥ ⑤ ⑤ ⑤ ⑥ ④ ⑦ ⑧ ⑤ ⑧ ⑩ ⑧ ⑦ ④ ② ⑦ ⑤ ⑤ ⑤❷ ⑥ ④ ② ⑧ ⑦ ④ ⑦ ⑤ ④ ■ ⑤ ⑦ ⑤ ⑧ ⑤ ⑤ ⑦ ⑦ ③ ❷ ⑦ ❶ ④ ⑤ ⑤ ⑥ ④ ② ⑦ ⑨ ⑤ ⑤ ⑤ ③ ⑤ ⑦ ⑦ ⑤ ④ ⑦ ⑤ ④ ⑤ ⑤ ⑦ ③ ⑤ ⑦ ⑤ ④ ⑤ ⑤ ⑤ ④ ⑤ ⑤ ⑦ ⑤ ④ ⑧ ⑦ ⑤ ❶ ⑤ ⑤ ⑥ ⑤ ⑤ ④ ⑤ ⑥ ⑤ ⑦ ② ⑤ ⑤ ⑥ ⑤ ⑤ ④ ⑤ ⑤ ② ⑦ ⑩ ⑤ ④ ⑦ ⑤ ⑦ ⑤⑨ ⑩ ④ ⑤ ⑨ ⑦ ⑤ ⑤ ⑦ ⑨ ⑤ ④ ⑤ ⑦ ⑤ ② ⑤ ⑦ ④ ① ⑨ ④ ⑦ ⑤ ❶ ③ P ⑦ ② ① P ■ ① P ❷ ④ ⑤ ⑦ ③ ⑤ ⑦ ⑤ ④ ⑤ ⑤ ⑤ ⑤⑧ ⑦ ⑤ ⑤ ⑤ ⑤ ⑥ ⑦ ⑧❶ ③❷ ⑤ ⑤ ⑦ ⑤ ⑤⑧ ⑦ ⑤ ⑤ ⑤ ⑤ ⑥ ⑤ ④ ⑤ ■ ④ ⑦ ❷ ④ ④ ③ ② ⑦ ■ ⑤ ⑦ ⑤ ⑤ ⑧ ⑤ ⑦ ⑤ ③ ⑦ ■ ⑦ ⑥ ■ ⑦ ⑩ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑥ ④ ■ ■ ⑨ ⑦ ■ ⑦ ③ ■ ⑦ ⑩ ④ ⑨ ⑧ ④ ⑤ ❶ ⑤ ⑦ ⑧ ④ ④ ⑤ Kernel Computation: Running Time Input Input Type Size Prepr Query Prepr Query Prepr Query sphere cylinder clustered ✫ Prepr: Time (in secs.) in converting input into a fat set and prepro- cessing for nearest-neighbor (NN) queries ✫ Query: Time (in secs.) in answering NN queries ✫ Experiments run on Pentium IV 3.6GHz processor with 2GB RAM Geometric Approximation Using Coresets 11

  13. ✉ s ♥ ❸ ♠ ✇ ♥ ♦ ✛ r ✈ ♥ ❸ r q r ♥ ❸ r ♥ ♦ s ✈ ♥ ✇ ♠ r r r ❸ r t ♦ q ❸ ✉ ♠ r r q ♦ ♣ r ❸ q ♦ r ❫❥ ✐ ❫ ❤ ✛ ❸ r ✉ ♣ q r ❸ r ✉ q ❸ r ✉ ♥ t s ✇ ✈ ✇ Kernel Computation ✫ Computing -kernels for on 3D models Input Input Running Time Kernel Diameter Type Size Prepr Query Size Error bunny dragon buddha Geometric Approximation Using Coresets 12

  14. Experimental Results: Approximation Error ✫ Tradeoff between kernel size and approximation error 0.45 0.45 Bunny: 35,947 vertices 2D 0.4 Dragon: 437,645 vertices 0.4 4D 6D 0.35 0.35 8D Approximation Error Approximation Error 0.3 0.3 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 0 100 200 300 400 500 0 100 200 300 400 500 600 700 Kernel Size Kernel Size Geometric Approximation Using Coresets 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend