generalized linear factor models a local em estimation
play

Generalized Linear Factor Models: a local EM estimation Xavier Bry - PowerPoint PPT Presentation

Generalized Linear Factor Models: a local EM estimation Xavier Bry a, Christian Lavergne ab and Mohamed Saidane c E-mails: [bry , lavergne]@math.univ-montp2.fr ; Mohamed.Saidane@isg.rnu.tn a I3M, Universit Montpellier II, France b universit


  1. Generalized Linear Factor Models: a local EM estimation Xavier Bry a, Christian Lavergne ab and Mohamed Saidane c E-mails: [bry , lavergne]@math.univ-montp2.fr ; Mohamed.Saidane@isg.rnu.tn a I3M, Université Montpellier II, France b université Montpellier III, France c Université du 7 Novembre à Carthage, Tunisie X. Bry, C. Lavergne, M. Saidane: Generalized Linear Factor Models: a local EM estimation COMPSTAT, August 2010, Paris

  2. 2 Motivations Motivations: Quantitative measures Social Sciences, Biology, Environment, ... → = Miscellaneous types of variables Qualitative characteristics Counts B  1, p  ;B  n , p  Life times M  1 ; p 1 , p k  ; M  n ; p 1 , p k  P  ;  k ,  ;etc. X. Bry, C. Lavergne, M. Saidane: Generalized Linear Factor Models: a local EM estimation COMPSTAT, August 2010, Paris

  3. 3 Motivations Motivations: Quantitative measures Social Sciences, Biology, Environment, ... → = Miscellaneous types of variables Qualitative characteristics Counts B  1, p  ;B  n , p  Life times M  1 ; p 1 , p k  ; M  n ; p 1 , p k  P  ;  k ,  ;etc. Abundant & related ⇒ Dimension reduction ⇒ Correlation modeling X. Bry, C. Lavergne, M. Saidane: Generalized Linear Factor Models: a local EM estimation COMPSTAT, August 2010, Paris

  4. 4 Model & notations unit t Data: ↓ → y t = ( yit ) i =1, p Observed on n observation units {1, ... , t , ... n }: p variables { y 1 ,..., yp } ( p ,1) underlying → q latent factors { f 1,..., fq } f t = ( fjt ) j =1, q q < p ( q ,1) Observation units are independent X. Bry, C. Lavergne, M. Saidane: Generalized Linear Factor Models: a local EM estimation COMPSTAT, August 2010, Paris

  5. 5 Model & notations unit t Data: ↓ → y t = ( yit ) i =1, p Observed on n observation units {1, ... , t , ... n }: p variables { y 1 ,..., yp } ( p ,1) underlying → q latent factors { f 1,..., fq } f t = ( fjt ) j =1, q q < p ( q ,1) Observation units are independent Factor Model: ∀ t , f t ~ N (0 ; I q ) Factors f j generate linear predictors of variables y i → linear predictor of y it | f t : η it = θ i + ai 'f t η t = θ + A f t ( p ,1) ( p ,1) ( p , q ) ( q ,1) A = ( a 1 , ... , a p )' ; θ = ( θ i ) i ; F = (f 1 , ... , f t , ... , f n ) ; η t = ( η it ) i ; η = ( η it ) i,t = ( η 1 , ... , η t , ... , η n ) = 1 n '  A F ( p , n ) ( p , q )( q,n ) X. Bry, C. Lavergne, M. Saidane: Generalized Linear Factor Models: a local EM estimation COMPSTAT, August 2010, Paris

  6. 6 Model & notations Model of y conditional to F: ∀ t , y t | f t ~ ℘ t ∈ Exponential family (Nelder & Wedderburn): l i  y it ∣ it , = exp   c i  y it ,   y it  it − b i  it  a it  ∀ t , ( yit ) i | f t are µ it = E ( y it ) = b i '( δ € it ) ╨ Var ( y it ) = a it ( φ ) b i "( δ € it ) = a it ( φ ) b i "( b i ' -1 ( µ it )) v i ( µ it )= b i "([ bi ' -1 ( µ it )] Conditional variance matrix: Var  y t = diag { a it  v i  it } i = 1, p X. Bry, C. Lavergne, M. Saidane: Generalized Linear Factor Models: a local EM estimation COMPSTAT, August 2010, Paris

  7. 7 Model & notations Model of y conditional to F: ∀ t , y t | f t ~ ℘ t ∈ Exponential family (Nelder & Wedderburn): l i  y it ∣ it , = exp   c i  y it ,   y it  it − b i  it  a it  ∀ t , ( yit ) i | f t are µ it = E ( y it ) = b i '( δ € it ) ╨ Var ( y it ) = a it ( φ ) b i "( δ € it ) = a it ( φ ) b i "( b i ' -1 ( µ it )) v i ( µ it )= b i "([ bi ' -1 ( µ it )] Conditional variance matrix: Var  y t = diag { a it  v i  it } i = 1, p ∀ i , t : η it = g i ( µ it ) Link with linear predictor: link function δ € it = canonical parameter ; g i = b i ' -1 ⇒ η it = δ it canonical link The classical Gaussian Linear Factor Model: y it | f t ~ Ν ( µ it ; σ ²) with µ it = η it X. Bry, C. Lavergne, M. Saidane: Generalized Linear Factor Models: a local EM estimation COMPSTAT, August 2010, Paris

  8. 8 Factor Models: available estimation techniques The classical Gaussian Linear Factor Model: EM algorithm estimation: A is estimated by maximizing the expectation, conditional to observations, of the derivative of the completed log-likelihood (EDLCO), integrated with respect to the factors: ∑ E  ∇ log l  y t , f t ∣ y t  = 0 ⇒ taking the conditional expectation of the 1 st order conditions: t = possible because EDLCO is analytically determined X. Bry, C. Lavergne, M. Saidane: Generalized Linear Factor Models: a local EM estimation COMPSTAT, August 2010, Paris

  9. 9 Factor Models: available estimation techniques The classical Gaussian Linear Factor Model: EM algorithm estimation: A is estimated by maximizing the expectation, conditional to observations, of the derivative of the completed log-likelihood (EDLCO), integrated with respect to the factors: ∑ E  ∇ log l  y t , f t ∣ y t  = 0 ⇒ taking the conditional expectation of the 1 st order conditions: t = possible because EDLCO is analytically determined Generalized Linear Factor Models: → Expectation of EDLCO not analytically determined Direct EM impossible → [Moustaki, I., & Knott, M. (2000)] Max of the expected completed log- Likelihood, single factor; Gauss-Hermite quadrature used to approximate integral. Computa- tionally → [Wedel, M. & Kamakura, W.A. (2001)] Monte Carlo approach intensive [Moustaki, I & Victoria-Feser, M.P.(2006)] → Iterative estimation method inspired from the indirect inference technique [Gourieroux (1993)]. X. Bry, C. Lavergne, M. Saidane: Generalized Linear Factor Models: a local EM estimation COMPSTAT, August 2010, Paris

  10. 10 Looking back at GLM's GLM: GLM of one variable y , depending on predictors X = ( x j ) j =1, q µ = E ( y ) η = X β ∀ t , η t = g ( µ t ) ⇒ x t ' β = g ( b' ( δ t )) Linear predictor:   c  y t ,   n n y t  t − b  t  L  ; y = ∑ L t  t ; y t = ∑ Log-likelihood: a t  t = 1 t = 1 ∂ L t = ∂ t ∂ t ∂ t ∂ L t y t − t 1 1 Derivation / β β : = x tj ∂ j ∂  j ∂ t ∂ t ∂ t g '  t  b " t  a t  = V ( y t ) = a t ( φ ) v ( µ t ) W  = diag  g '  t  2 V  y t   t = 1, n = diag  g '  t  2 a t  v  t   t = 1, n Let: ; ∂ = diag  ∂ t  t = 1, n ∂ t ∂ = diag  g '  t   t = 1, n − 1 ∂ Then: ∇  L = 0 ⇔ X ' W  ∂  y −= 0 non linear / β interpretable as normal equations of a linear model X. Bry, C. Lavergne, M. Saidane: Generalized Linear Factor Models: a local EM estimation COMPSTAT, August 2010, Paris

  11. 11 Looking back at GLM's Fisher's scores algorithm: [ k ] −  E [  − 1 ∂∂ ' ] ∂ 2 L [ k ]  ∂  [ k ] − 1  ∂  [ k ] ∂ L − 1 X ' W  [ k ] ∂ − 1 X  =  [ k ] −  X ' W  [ k ] [ k  1 ] =   y − [ k ]  iteration nr. − 1  X  [ k ]    y − [ k ]   ∂  [ k ] − 1 X ' W  [ k ] − 1 X  ∂ =  X ' W  [ k ] − 1 ∂ ∇  L = 0 ⇔ X ' W  ∂  y −= 0 z [ k ] = working variable − 1  z − X   = 0 normal equations of lin. model M : z  = X  ; E = 0 ⇔ X ' W  2  t  V  y t  : V = W  V  t = V  z  ,t = g ' [ k ] ; E  [ k ] : z  = X  [ k ] = 0 ,V  [ k ] = W  [ k ] Current linearized model: M X. Bry, C. Lavergne, M. Saidane: Generalized Linear Factor Models: a local EM estimation COMPSTAT, August 2010, Paris

  12. 12 Looking back at GLM's Fisher's scores algorithm: [ k ] −  E [  − 1 ∂∂ ' ] ∂ 2 L [ k ]  ∂  [ k ] − 1  ∂  [ k ] ∂ L − 1 X ' W  [ k ] ∂ − 1 X  =  [ k ] −  X ' W  [ k ] [ k  1 ] =   y − [ k ]  iteration nr. − 1  X  [ k ]    y − [ k ]   ∂  [ k ] − 1 X ' W  [ k ] − 1 X  ∂ =  X ' W  [ k ] − 1 ∂ ∇  L = 0 ⇔ X ' W  ∂  y −= 0 z [ k ] = working variable − 1  z − X   = 0 normal equations of lin. model M : z  = X  ; E = 0 ⇔ X ' W  2  t  V  y t  : V = W  V  t = V  z  ,t = g ' [ k ] ; E  [ k ] : z  = X  [ k ] = 0 ,V  [ k ] = W  [ k ] Current linearized model: M Iterative GLS estimation: g ( y ) ≈ g ( µ ) + g' ( µ ) ( y - µ ) = X   ∂   y −= z ∂ 0) Initializing M [0] with OLS of g ( y ) on X → β [0] i) β [ k ] → W β [ k ] ; z β [ k ] Repeat until convergence ii) GLS on M [ k ] → β [ k ] = Quasi-Likelihood Estimation (QLE) = mimics MLE on each step, under a normality and independence assumption of the z β ,t 's with a fixed covariance structure. X. Bry, C. Lavergne, M. Saidane: Generalized Linear Factor Models: a local EM estimation COMPSTAT, August 2010, Paris

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend