generalized koszul duality applied to complete
play

Generalized Koszul duality applied to complete intersection rings - PowerPoint PPT Presentation

Generalized Koszul duality applied to complete intersection rings Jesse Burke, UCLA Dave Bensons Birthday Isle of Skye June 26, 2015 BGG (Bernstein-Gelfand-Gelfand) Correspondence Q commutative ring S = Q [ T 1 , . . . , T c ] with | T


  1. Examples 1) A arbitrary A ∞ -algebra, can form curved dg-coalgebra Bar A Bar A → A is an acyclic twisting cochain

  2. Examples 1) A arbitrary A ∞ -algebra, can form curved dg-coalgebra Bar A Bar A → A is an acyclic twisting cochain 2) ( Q , n , k ) local ring, R = Q / I quotient A ≃ − → R minimal Q -free resolution

  3. Examples 1) A arbitrary A ∞ -algebra, can form curved dg-coalgebra Bar A Bar A → A is an acyclic twisting cochain 2) ( Q , n , k ) local ring, R = Q / I quotient A ≃ − → R minimal Q -free resolution A has an A ∞ -algebra structure (-) (but not necessarily dg-algebra (Avramov))

  4. Examples 1) A arbitrary A ∞ -algebra, can form curved dg-coalgebra Bar A Bar A → A is an acyclic twisting cochain 2) ( Q , n , k ) local ring, R = Q / I quotient A ≃ − → R minimal Q -free resolution A has an A ∞ -algebra structure (-) (but not necessarily dg-algebra (Avramov)) if Q → R Golod, Bar A is minimal, hence only acyclic twisting cochain; proves several new results about Golod maps and consolidates existing theory

  5. Examples 1) A arbitrary A ∞ -algebra, can form curved dg-coalgebra Bar A Bar A → A is an acyclic twisting cochain 2) ( Q , n , k ) local ring, R = Q / I quotient A ≃ − → R minimal Q -free resolution A has an A ∞ -algebra structure (-) (but not necessarily dg-algebra (Avramov)) if Q → R Golod, Bar A is minimal, hence only acyclic twisting cochain; proves several new results about Golod maps and consolidates existing theory For non-Golod rings, deform Koszul dual of algebra underlying minimal model?

  6. 3) g restricted Lie algebra with k -basis ( x 1 , . . . , x n ); set y i = x [ p ] − x p i ∈ U ( g ) i O ( g ) := Sym k ( g (1) ) ∼ = k [ y 1 , . . . , y n ] ⊆ U ( g ) U is a finitely generated free O module.

  7. 3) g restricted Lie algebra with k -basis ( x 1 , . . . , x n ); set y i = x [ p ] − x p i ∈ U ( g ) i O ( g ) := Sym k ( g (1) ) ∼ = k [ y 1 , . . . , y n ] ⊆ U ( g ) U is a finitely generated free O module. O ( g ) u ( g ) = U ( g ) ⊗ O ( y 1 , . . . , y n ) restricted enveloping algebra; set A = Kos( y 1 , . . . , y n ) so U ⊗ O A ≃ − → u ( g ) is quasi-isomorphism.

  8. We know A has Koszul dual C W ; if U has Koszul dual D (over O !), then C W ⊗ D is Koszul dual of u ( g ) ≃ U ⊗ A .

  9. We know A has Koszul dual C W ; if U has Koszul dual D (over O !), then C W ⊗ D is Koszul dual of u ( g ) ≃ U ⊗ A . For example, g = g a , so U = k [ x ] and O = k [ x p ]. What is Koszul dual of k [ x ] over k [ x p ]?

  10. We know A has Koszul dual C W ; if U has Koszul dual D (over O !), then C W ⊗ D is Koszul dual of u ( g ) ≃ U ⊗ A . For example, g = g a , so U = k [ x ] and O = k [ x p ]. What is Koszul dual of k [ x ] over k [ x p ]? More generally, are trying to study the family of algebras O ( g ) A χ = U ⊗ O ( y 1 − χ ( y 1 ) , . . . , y n − χ ( y n )) for character χ : g (1) → k .

  11. (Back to) complete intersection rings f = f 1 , . . . , f c ⊆ Q A = Kos( f 1 , . . . , f c )

  12. (Back to) complete intersection rings f = f 1 , . . . , f c ⊆ Q A = Kos( f 1 , . . . , f c ) Assume H i ( A ) = 0 for i > 0, so A ≃ − → Q / ( f ) =: R is a quasi-isomorphism.

  13. (Back to) complete intersection rings f = f 1 , . . . , f c ⊆ Q A = Kos( f 1 , . . . , f c ) Assume H i ( A ) = 0 for i > 0, so A ≃ − → Q / ( f ) =: R is a quasi-isomorphism. E.g. Q = k [ z 1 , . . . , z c ] and f i = z p i .

  14. � � � � (Back to) complete intersection rings f = f 1 , . . . , f c ⊆ Q A = Kos( f 1 , . . . , f c ) Assume H i ( A ) = 0 for i > 0, so A ≃ − → Q / ( f ) =: R is a quasi-isomorphism. E.g. Q = k [ z 1 , . . . , z c ] and f i = z p i . R D f D f cdg ( S W ) dg ( A ) ∼ = L ∼ ∼ = = D f ( R ) If M is an R -module, what are representatives in these categories?

  15. Fix Q and R free resolutions: ≃ ≃ G − → M R ⊗ Q F − → M with G ♯ , F ♯ graded free Q -modules.

  16. Fix Q and R free resolutions: ≃ ≃ G − → M R ⊗ Q F − → M with G ♯ , F ♯ graded free Q -modules. Proposition (Eisenbud, 1980) There exists a system of higher homotopies { σ a | a ∈ N c } on G, with σ a : G → G a degree 2 | a | − 1 endomorphism. These determine a differential d on S ⊗ G such that ( S ⊗ G , d ) ∈ D f cdg ( S W ) .

  17. Example of higher homotopies f = ( x 3 , y 3 , z 3 ) Q = Z / 3 Z [ x , y , z ] W = x 3 T 1 + y 3 T 2 + z 3 T 3 . S = Q [ T 1 , T 1 , T 3 ]

  18. Example of higher homotopies f = ( x 3 , y 3 , z 3 ) Q = Z / 3 Z [ x , y , z ] W = x 3 T 1 + y 3 T 2 + z 3 T 3 . S = Q [ T 1 , T 1 , T 3 ] M = Q / ( xz + yz , y 2 + z 2 , x 2 , y 3 , z 3 ) G = 0 → Q 3 → Q 6 → Q 4 → Q 1 → 0 S (1) 4 ⊕ S (3) 3 � P = S ⊗ G ∼ � S ⊕ S (2) 6 � � ⊕ =

  19. d 0 � S (2) 4 ⊕ S (4) 3 S ⊕ S (2) 6 d 1 S (1) 4 ⊕ S (3) 3 � S (1) ⊕ S (3) 6 − y 2 − z 2    z 2 xz − z 2  0 − T 1 x − T 3 z 0 0 yz x 2 − xz + z 2 − z 2 − 2 − T 2 y 0 0 0     y 2 + z 2  − 2   T 3 x + T 3 z − yz − xz − z 2 − x 2 − xy − yz  0     d 0 =  − 2   T 2 0 0 x − z y 0 − z         T 3 x 2 + T 2 yz − T 3 z 2 − T 1 x 2 + T 1 xz − T 3 xz + T 3 z 2  − 2 0 0 − T 1 xz − T 2 yz − T 3 z 2 − T 2 xy + T 2 yz − T 2 y 2     − T 1 x 2 − T 1 xz + T 3 xz + T 3 z 2    − T 2 3 x − T 2 T 2 xy − T 3 xz + T 2 yz − T 3 z 2 − T 3 y 2 + T 1 xz − T 2 yz T 2 y 2 + T 3 yz T 3 x 2 + T 2 yz  − 2 3 z T 3 xy + T 3 yz     T 2 y 2 − T 2 z 2 − T 1 x 2 − T 1 xz − 2 − T 3 xy − T 2 xz − T 3 yz − T 2 z 2 T 1 xy + T 3 yz + T 2 z 2 − T 1 xz − T 2 yz − T 3 z 2 0 0    x 2 y 2 + z 2 xz − z 2 yz 2  0 0 0 0 T 2 y − T 1 x − T 3 z z 0 0 0 0 0        − T 3 x − T 3 z − T 2 y − T 3 z x + z − z  0 0 0 0        − T 1 x 2 − T 1 xz  d 1 = 0 − T 2 x − T 2 z 0 − T 3 y − T 2 z 0 − y z        − T 2 y 2  − 2 0 − T 2 y T 3 x − T 3 z z x − z 0         − 2 T 3 x + T 3 z 0 T 1 x 0 0 − z − y     − 2 T 2 z T 2 z T 1 xz + T 2 yz + T 3 z 2 y x − z 0 0

  20. matrix factorization = G + (higher) homotopies

  21. matrix factorization = G + (higher) homotopies constant terms = differential of G ; e.g.

  22. matrix factorization = G + (higher) homotopies constant terms = differential of G ; e.g. − y 2 − z 2  − T 1 x − T 3 z z 2 xz − z 2 yz  0 0 − T 2 y x 2 − xz + z 2 0 − z 2 0 0    y 2 + z 2  T 3 x + T 3 z 0 − yz − xz − z 2 − x 2 − xy − yz     d 0 = T 2 0 0 x − z y 0 − z   T 3 x 2 + T 2 yz − T 3 z 2 − T 1 x 2 + T 1 xz − T 3 xz + T 3 z 2  − T 1 xz − T 2 yz − T 3 z 2 − T 2 y 2  0 0 − T 2 xy + T 2 yz   − T 3 y 2 + T 1 xz − T 2 yz T 2 y 2 + T 3 yz − T 1 x 2 − T 1 xz + T 3 xz + T 3 z 2 T 3 x 2 + T 2 yz  − T 2 3 x − T 2 3 z T 2 xy − T 3 xz + T 2 yz − T 3 z 2 T 3 xy + T 3 yz    T 2 y 2 − T 2 z 2 − T 1 x 2 − T 1 xz 0 − T 3 xy − T 2 xz − T 3 yz − T 2 z 2 T 1 xy + T 3 yz + T 2 z 2 − T 1 xz − T 2 yz − T 3 z 2 0

  23. matrix factorization = G + (higher) homotopies constant terms = differential of G ; e.g. − y 2 − z 2  − T 1 x − T 3 z z 2 xz − z 2 yz  0 0 − T 2 y x 2 − xz + z 2 0 − z 2 0 0    y 2 + z 2  T 3 x + T 3 z 0 − yz − xz − z 2 − x 2 − xy − yz     d 0 = T 2 0 0 x − z y 0 − z   T 3 x 2 + T 2 yz − T 3 z 2 − T 1 x 2 + T 1 xz − T 3 xz + T 3 z 2  − T 1 xz − T 2 yz − T 3 z 2 − T 2 y 2  0 0 − T 2 xy + T 2 yz   − T 3 y 2 + T 1 xz − T 2 yz T 2 y 2 + T 3 yz − T 1 x 2 − T 1 xz + T 3 xz + T 3 z 2 T 3 x 2 + T 2 yz  − T 2 3 x − T 2 3 z T 2 xy − T 3 xz + T 2 yz − T 3 z 2 T 3 xy + T 3 yz    T 2 y 2 − T 2 z 2 − T 1 x 2 − T 1 xz 0 − T 3 xy − T 2 xz − T 3 yz − T 2 z 2 T 1 xy + T 3 yz + T 2 z 2 − T 1 xz − T 2 yz − T 3 z 2 0

  24. matrix factorization = G + (higher) homotopies constant terms = differential of G ; e.g. − y 2 − z 2  − T 1 x − T 3 z z 2 xz − z 2 yz  0 0 − T 2 y x 2 − xz + z 2 0 − z 2 0 0    y 2 + z 2 − xz − z 2 − x 2  T 3 x + T 3 z 0 − yz − xy − yz     d 0 = T 2 0 0 x − z y 0 − z   T 3 x 2 + T 2 yz − T 3 z 2 − T 1 x 2 + T 1 xz − T 3 xz + T 3 z 2  − T 1 xz − T 2 yz − T 3 z 2 − T 2 xy + T 2 yz − T 2 y 2  0 0   − T 3 y 2 + T 1 xz − T 2 yz T 2 y 2 + T 3 yz − T 1 x 2 − T 1 xz + T 3 xz + T 3 z 2 T 3 x 2 + T 2 yz  − T 2 3 x − T 2 3 z T 2 xy − T 3 xz + T 2 yz − T 3 z 2 T 3 xy + T 3 yz    T 2 y 2 − T 2 z 2 − T 1 x 2 − T 1 xz 0 − T 3 xy − T 2 xz − T 3 yz − T 2 z 2 T 1 xy + T 3 yz + T 2 z 2 − T 1 xz − T 2 yz − T 3 z 2 0 1 ⊗ d G S (2) 6 ∼ → S (2) ⊗ Q G 1 ∼ = S (2) 4 2 = S (2) ⊗ Q G 2 − − −

  25. matrix factorization = G + (higher) homotopies linear terms = homotopies for multiplication by f i ; e.g.

  26. matrix factorization = G + (higher) homotopies linear terms = homotopies for multiplication by f i ; e.g. − y 2 − z 2  − T 1 x − T 3 z z 2 xz − z 2 yz  0 0 − T 2 y x 2 − xz + z 2 0 − z 2 0 0    y 2 + z 2  T 3 x + T 3 z 0 − yz − xz − z 2 − x 2 − xy − yz     d 0 = T 2 0 0 x − z y 0 − z   T 3 x 2 + T 2 yz − T 3 z 2 − T 1 x 2 + T 1 xz − T 3 xz + T 3 z 2  − T 1 xz − T 2 yz − T 3 z 2 − T 2 y 2  0 0 − T 2 xy + T 2 yz   − T 3 y 2 + T 1 xz − T 2 yz T 2 y 2 + T 3 yz − T 1 x 2 − T 1 xz + T 3 xz + T 3 z 2 T 3 x 2 + T 2 yz  − T 2 3 x − T 2 3 z T 2 xy − T 3 xz + T 2 yz − T 3 z 2 T 3 xy + T 3 yz    T 2 y 2 − T 2 z 2 − T 1 x 2 − T 1 xz 0 − T 3 xy − T 2 xz − T 3 yz − T 2 z 2 T 1 xy + T 3 yz + T 2 z 2 − T 1 xz − T 2 yz − T 3 z 2 0

  27. matrix factorization = G + (higher) homotopies linear terms = homotopies for multiplication by f i ; e.g. − y 2 − z 2  − T 1 x − T 3 z z 2 xz − z 2 yz  0 0 − T 2 y x 2 − xz + z 2 0 − z 2 0 0    y 2 + z 2  T 3 x + T 3 z 0 − yz − xz − z 2 − x 2 − xy − yz     d 0 = T 2 0 0 x − z y 0 − z   T 3 x 2 + T 2 yz − T 3 z 2 − T 1 x 2 + T 1 xz − T 3 xz + T 3 z 2  − T 1 xz − T 2 yz − T 3 z 2 − T 2 y 2  0 0 − T 2 xy + T 2 yz   − T 3 y 2 + T 1 xz − T 2 yz T 2 y 2 + T 3 yz − T 1 x 2 − T 1 xz + T 3 xz + T 3 z 2 T 3 x 2 + T 2 yz  − T 2 3 x − T 2 3 z T 2 xy − T 3 xz + T 2 yz − T 3 z 2 T 3 xy + T 3 yz    T 2 y 2 − T 2 z 2 − T 1 x 2 − T 1 xz 0 − T 3 xy − T 2 xz − T 3 yz − T 2 z 2 T 1 xy + T 3 yz + T 2 z 2 − T 1 xz − T 2 yz − T 3 z 2 0

  28. matrix factorization = G + (higher) homotopies linear terms = homotopies for multiplication by f i ; e.g. − y 2 − z 2  z 2 xz − z 2  − T 1 x − T 3 z 0 0 yz x 2 − xz + z 2 − z 2 − T 2 y 0 0 0   y 2 + z 2  T 3 x + T 3 z − yz − xz − z 2 − x 2 − xy − yz  0   d 0 =  T 2 0 0 x − z y 0 − z     T 3 x 2 + T 2 yz − T 3 z 2 − T 1 x 2 + T 1 xz − T 3 xz + T 3 z 2  0 0 − T 1 xz − T 2 yz − T 3 z 2 − T 2 xy + T 2 yz − T 2 y 2   − T 1 x 2 − T 1 xz + T 3 xz + T 3 z 2  − T 2 3 x − T 2 T 2 xy − T 3 xz + T 2 yz − T 3 z 2 − T 3 y 2 + T 1 xz − T 2 yz T 2 y 2 + T 3 yz T 3 x 2 + T 2 yz  3 z T 3 xy + T 3 yz   T 2 y 2 − T 2 z 2 − T 1 x 2 − T 1 xz − T 3 xy − T 2 xz − T 3 yz − T 2 z 2 T 1 xy + T 3 yz + T 2 z 2 − T 1 xz − T 2 yz − T 3 z 2 0 0       − x 0 − z 0 − y 0       T 1  + T 2  + T 3       0 1 x + z     0 0 0 � = T i ⊗ σ i : S ⊗ G 0 → S (1) ⊗ G 1 σ i : G 0 → G 1

  29. matrix factorization = G + (higher) homotopies quadratic term = higher homotopy

  30. matrix factorization = G + (higher) homotopies quadratic term = higher homotopy − y 2 − z 2  − T 1 x − T 3 z z 2 xz − z 2 yz  0 0 − T 2 y x 2 − xz + z 2 − z 2 0 0 0    y 2 + z 2  T 3 x + T 3 z 0 − yz − xz − z 2 − x 2 − xy − yz     d 0 = T 2 0 0 x − z y 0 − z   T 3 x 2 + T 2 yz − T 3 z 2 − T 1 x 2 + T 1 xz − T 3 xz + T 3 z 2  − T 1 xz − T 2 yz − T 3 z 2 − T 2 y 2  0 0 − T 2 xy + T 2 yz   − T 3 y 2 + T 1 xz − T 2 yz T 2 y 2 + T 3 yz − T 1 x 2 − T 1 xz + T 3 xz + T 3 z 2 T 3 x 2 + T 2 yz  − T 2 3 x − T 2 3 z T 2 xy − T 3 xz + T 2 yz − T 3 z 2 T 3 xy + T 3 yz    T 2 y 2 − T 2 z 2 − T 1 x 2 − T 1 xz 0 − T 3 xy − T 2 xz − T 3 yz − T 2 z 2 T 1 xy + T 3 yz + T 2 z 2 − T 1 xz − T 2 yz − T 3 z 2 0

  31. matrix factorization = G + (higher) homotopies quadratic term = higher homotopy − y 2 − z 2  − T 1 x − T 3 z z 2 xz − z 2 yz  0 0 − T 2 y x 2 − xz + z 2 − z 2 0 0 0    y 2 + z 2  T 3 x + T 3 z 0 − yz − xz − z 2 − x 2 − xy − yz     d 0 = T 2 0 0 x − z y 0 − z   T 3 x 2 + T 2 yz − T 3 z 2 − T 1 x 2 + T 1 xz − T 3 xz + T 3 z 2  − T 1 xz − T 2 yz − T 3 z 2 − T 2 y 2  0 0 − T 2 xy + T 2 yz   − T 3 y 2 + T 1 xz − T 2 yz T 2 y 2 + T 3 yz − T 1 x 2 − T 1 xz + T 3 xz + T 3 z 2 T 3 x 2 + T 2 yz  − T 2 3 x − T 2 3 z T 2 xy − T 3 xz + T 2 yz − T 3 z 2 T 3 xy + T 3 yz    T 2 y 2 − T 2 z 2 − T 1 x 2 − T 1 xz 0 − T 3 xy − T 2 xz − T 3 yz − T 2 z 2 T 1 xy + T 3 yz + T 2 z 2 − T 1 xz − T 2 yz − T 3 z 2 0

  32. matrix factorization = G + (higher) homotopies quadratic term = higher homotopy − y 2 − z 2  z 2 xz − z 2  − T 1 x − T 3 z 0 0 yz x 2 − xz + z 2 − z 2 − T 2 y 0 0 0   y 2 + z 2  T 3 x + T 3 z − yz − xz − z 2 − x 2 − xy − yz  0   d 0 =  T 2 0 0 x − z y 0 − z     T 3 x 2 + T 2 yz − T 3 z 2 − T 1 x 2 + T 1 xz − T 3 xz + T 3 z 2  0 0 − T 1 xz − T 2 yz − T 3 z 2 − T 2 xy + T 2 yz − T 2 y 2   − T 1 x 2 − T 1 xz + T 3 xz + T 3 z 2  − T 2 3 x − T 2 T 2 xy − T 3 xz + T 2 yz − T 3 z 2 − T 3 y 2 + T 1 xz − T 2 yz T 2 y 2 + T 3 yz T 3 x 2 + T 2 yz  3 z T 3 xy + T 3 yz   T 2 y 2 − T 2 z 2 − T 1 x 2 − T 1 xz − T 3 xy − T 2 xz − T 3 yz − T 2 z 2 T 1 xy + T 3 yz + T 2 z 2 − T 1 xz − T 2 yz − T 3 z 2 0 0   0 T 2  = T 2 − x − z 3 ⊗ σ (0 , 0 , 2) : S ⊗ G 0 → S (4) ⊗ G 3 . 3  0

  33. matrix factorization = G + (higher) homotopies quadratic term = higher homotopy − y 2 − z 2  z 2 xz − z 2  − T 1 x − T 3 z 0 0 yz − T 2 y x 2 − xz + z 2 − z 2 0 0 0   y 2 + z 2  T 3 x + T 3 z − yz − xz − z 2 − x 2 − xy − yz  0     d 0 = T 2 0 0 x − z y 0 − z    T 3 x 2 + T 2 yz − T 3 z 2 − T 1 x 2 + T 1 xz − T 3 xz + T 3 z 2  0 0 − T 1 xz − T 2 yz − T 3 z 2 − T 2 xy + T 2 yz − T 2 y 2   − T 3 y 2 + T 1 xz − T 2 yz T 2 y 2 + T 3 yz − T 1 x 2 − T 1 xz + T 3 xz + T 3 z 2 T 3 x 2 + T 2 yz  − T 2 3 x − T 2 T 2 xy − T 3 xz + T 2 yz − T 3 z 2  3 z T 3 xy + T 3 yz   T 2 y 2 − T 2 z 2 − T 1 x 2 − T 1 xz − T 3 xy − T 2 xz − T 3 yz − T 2 z 2 T 1 xy + T 3 yz + T 2 z 2 − T 1 xz − T 2 yz − T 3 z 2 0 0   0 T 2  = T 2 − x − z 3 ⊗ σ (0 , 0 , 2) : S ⊗ G 0 → S (4) ⊗ G 3 . 3  0 σ (0 , 0 , 2) only nonzero σ J with | J | ≥ 2

  34. R -free resolution from higher homotopies S ∗ ⊗ G ⊗ R ≃ − → R M an R -free resolution; differentials given by higher homotopies.

  35. R -free resolution from higher homotopies S ∗ ⊗ G ⊗ R ≃ − → R M an R -free resolution; differentials given by higher homotopies. 0 ← G 0 ← G 1 ← ( S 2 ) ∗ ⊗ G 0 ← ( S 2 ) ∗ ⊗ G 1 ← ( S 4 ) ∗ ⊗ G 0 ( S 2 ) ∗ ⊗ G 2 ← . . . G 2 G 3 with − ⊗ R applied to above.

  36. Explanation for higher homotopies: we can transfer the R -module ≃ structure on M to an A ∞ A -module structure on G − → M .

  37. Explanation for higher homotopies: we can transfer the R -module ≃ structure on M to an A ∞ A -module structure on G − → M . This is encoded in an extended Bar A -comodule structure on Bar A ⊗ G . But by Koszul duality, Bar A ≃ C W is a homotopy equivalence, and so Bar A ⊗ G ≃ C W ⊗ G . Now dualize C to S .

  38. Proposition (-, Eisenbud, Schreyer) There exists a system of higher operators { t i 1 ,..., i j | 1 ≤ i 1 < . . . < i j ≤ c } , with t i 1 ,..., i j : F → F a degree j endomorphism. These determine a derivation d on A ⊗ F such that ( A ⊗ F , d ) is a dg A-module quasi-isomorphic to M.

  39. Proposition (-, Eisenbud, Schreyer) There exists a system of higher operators { t i 1 ,..., i j | 1 ≤ i 1 < . . . < i j ≤ c } , with t i 1 ,..., i j : F → F a degree j endomorphism. These determine a derivation d on A ⊗ F such that ( A ⊗ F , d ) is a dg A-module quasi-isomorphic to M. These are dual to the higher homotopies, via the generalized BGG correspondence.

  40. Representatives of M

  41. � � � � Representatives of M R S ⊗ G ∈ D f D f cdg ( S W ) dg ( A ) ∋ A ⊗ F ∼ = L ∼ ∼ = = M ∈ D f ( R )

  42. � � � � Representatives of M R S ⊗ G ∈ D f D f cdg ( S W ) dg ( A ) ∋ A ⊗ F ∼ = L ∼ ∼ = = M ∈ D f ( R ) Want to use this BGG to study numerical invariants of M .

  43. Assume ( Q , n , k ) is local and the resolutions G , R ⊗ F are minimal .

  44. Assume ( Q , n , k ) is local and the resolutions G , R ⊗ F are minimal . Guiding questions: what are the shapes and sizes of G and F ? How are they related?

  45. Assume ( Q , n , k ) is local and the resolutions G , R ⊗ F are minimal . Guiding questions: what are the shapes and sizes of G and F ? How are they related? Set β Q M ( i ) = dim k G i ⊗ k = dim k Tor Q i ( M , k ) β R M ( i ) = dim k F i ⊗ k = dim k Ext n R ( M , k ) � P Q β Q M ( n ) t n M ( t ) := n ≥ 0 � P R β R M ( n ) t n M ( t ) := n ≥ 0

  46. � Apply − ⊗ Q k to BGG diagram: R � D f S ⊗ ¯ ¯ dg ( ¯ dg (¯ Λ) ∋ ¯ Λ ⊗ ¯ G ∈ D f S ) F ∼ = L

  47. � Apply − ⊗ Q k to BGG diagram: R � D f S ⊗ ¯ ¯ dg ( ¯ dg (¯ Λ) ∋ ¯ Λ ⊗ ¯ G ∈ D f S ) F ∼ = L We have R Hom R ( M , k ) ∼ = ¯ S ⊗ ¯ G Q k ∼ = ¯ Λ ⊗ ¯ M ⊗ L F

  48. � Apply − ⊗ Q k to BGG diagram: R � D f S ⊗ ¯ ¯ dg ( ¯ dg (¯ Λ) ∋ ¯ Λ ⊗ ¯ G ∈ D f S ) F ∼ = L We have since S ∗ ⊗ G ⊗ R R Hom R ( M , k ) ∼ = ¯ S ⊗ ¯ ≃ G − → R M Q k ∼ = ¯ Λ ⊗ ¯ ≃ M ⊗ L F since A ⊗ F − → Q M

  49. � Apply − ⊗ Q k to BGG diagram: R � D f S ⊗ ¯ ¯ dg ( ¯ dg (¯ Λ) ∋ ¯ Λ ⊗ ¯ G ∈ D f S ) F ∼ = L We have R Hom R ( M , k ) ∼ = ¯ S ⊗ ¯ G ∼ Λ ( k , M ⊗ L = R Hom ¯ Q k ) (by BGG) Q k ∼ = ¯ Λ ⊗ ¯ ≃ M ⊗ L F since A ⊗ F − → Q M

  50. � Apply − ⊗ Q k to BGG diagram: R � D f S ⊗ ¯ ¯ dg ( ¯ dg (¯ Λ) ∋ ¯ Λ ⊗ ¯ G ∈ D f S ) ∼ F = L We have R Hom R ( M , k ) ∼ = ¯ S ⊗ ¯ G ∼ Λ ( k , M ⊗ L = R Hom ¯ Q k ) (by BGG) Q k ∼ = ¯ Λ ⊗ ¯ F ∼ M ⊗ L = k ⊗ L S R Hom R ( M , k ) (by BGG) ¯

  51. Eilenberg-Moore spectral sequence

  52. Eilenberg-Moore spectral sequence For dg-modules M , N over dg-algebra B , have Eilenberg-Moore spectral sequence: E 2 = Ext ∗ H ( B ) ( H ( M ) , H ( N )) ⇒ H ( R Hom B ( M , N )) and analogous for Tor.

  53. Applying to: Q k ) ∼ = ¯ S ⊗ ¯ G ∼ Λ ( k , M ⊗ L R Hom ¯ = R Hom R ( M , k ) S R Hom R ( M , k ) ∼ = ¯ Λ ⊗ ¯ F ∼ k ⊗ L = M ⊗ L Q k ¯ gives

  54. Applying to: Q k ) ∼ = ¯ S ⊗ ¯ G ∼ Λ ( k , M ⊗ L R Hom ¯ = R Hom R ( M , k ) S R Hom R ( M , k ) ∼ = ¯ Λ ⊗ ¯ F ∼ k ⊗ L = M ⊗ L Q k ¯ gives E 2 = Ext ∗ Λ ( k , Tor Q ∗ ( M , k )) ⇒ Ext ∗ R ( M , k ) ¯

  55. Applying to: Q k ) ∼ = ¯ S ⊗ ¯ G ∼ Λ ( k , M ⊗ L R Hom ¯ = R Hom R ( M , k ) S R Hom R ( M , k ) ∼ = ¯ Λ ⊗ ¯ F ∼ k ⊗ L = M ⊗ L Q k ¯ gives E 2 = Ext ∗ Λ ( k , Tor Q ∗ ( M , k )) ⇒ Ext ∗ R ( M , k ) ¯ ¯ S R ( M , k ) , k ) ⇒ Tor Q ∗ (Ext ∗ E 2 = Tor ∗ ( M , k )

  56. These were previously known by Avramov-Buchweitz, and Avramov-Gasharov-Peeva, respectively. The second was inspired by spectral sequence of Benson-Carlson (TAMS ’94).

  57. These were previously known by Avramov-Buchweitz, and Avramov-Gasharov-Peeva, respectively. The second was inspired by spectral sequence of Benson-Carlson (TAMS ’94). In particular, gives (from first page) well known inequalities: P Q M ( t ) P R M ( t ) ≤ (1 − t 2 ) c P Q M ( t ) ≤ P R M ( t )(1 + t ) c with equality if and only if the corresponding spectral sequences collapse on the first page if and only if higher homotopies (resp. operators) are minimal.

  58. Putting these together: M ( t )(1 + t ) c ≤ P Q M ( t ) P Q M ( t ) ≤ P R (1 − t ) c so we see that both cannot collapse at once.

  59. Putting these together: M ( t )(1 + t ) c ≤ P Q M ( t ) P Q M ( t ) ≤ P R (1 − t ) c so we see that both cannot collapse at once. What’s happening?

  60. Analogy with equivariant cohomology

  61. Analogy with equivariant cohomology X is a smooth manifold, T torus acting smoothly on X

  62. � � � � Analogy with equivariant cohomology X is a smooth manifold, T torus acting smoothly on X Goresky, Kottwitz and MacPherson (GKM) show that there is a commutative diagram R � D f dg ( ¯ dg (¯ D f S ) Λ) ∼ = L ∼ ∼ = = D b T (pt) p ∗ D b T ( X ) T (pt) ∼ ¯ ¯ S = H ∗ = R [ T 1 , . . . , T c ] Λ = H ∗ ( T ) D b T ( X ) equivariant derived category of X .

  63. So we have −⊗ R k D b T ( X ) ∼ = D f ( R ) → D b − − − − T (pt)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend