from f theory to dynamic glsm
play

FROM F-THEORY TO DYNAMIC GLSM Physics and Geometry of F-theory - PowerPoint PPT Presentation

FABIO APRUZZI FROM F-THEORY TO DYNAMIC GLSM Physics and Geometry of F-theory (2017), ICTP, Trieste Based on 1602.04221 & 1610.00718 in collaboration with Falk Hassler, Jonathan Heckman and Ilarion Melnikov and see also 1601.02015 by


  1. FABIO APRUZZI FROM F-THEORY TO DYNAMIC GLSM Physics and Geometry of F-theory (2017), ICTP, Trieste

  2. Based on 1602.04221 & 1610.00718 in collaboration with Falk Hassler, Jonathan Heckman and Ilarion Melnikov and see also 1601.02015 by Sakura Schäfer-Nameki and Timo Weigand

  3. A RECENT HISTORY REVIEW

  4. A RECENT HISTORY REVIEW F on CY4: 4D Theories

  5. A RECENT HISTORY REVIEW F on CY4: 4D Theories … almost everybody in the audience

  6. A RECENT HISTORY REVIEW F on CY4: 4D Theories … almost everybody in the audience F on CY3: 6D (SCFTs) Theories

  7. A RECENT HISTORY REVIEW F on CY4: 4D Theories … almost everybody in the audience F on CY3: 6D (SCFTs) Theories … a large subset of you

  8. A RECENT HISTORY REVIEW F on CY4: 4D Theories … almost everybody in the audience F on CY3: 6D (SCFTs) Theories … a large subset of you F on CY5: 2D (0,2) Theories

  9. A RECENT HISTORY REVIEW F on CY4: 4D Theories … almost everybody in the audience F on CY3: 6D (SCFTs) Theories … a large subset of you F on CY5: 2D (0,2) Theories … a smaller subset of you

  10. MAIN IDEA F-THEORY CY3 6D (SCFTs) Theories CY5 Kähler 4-Manifold + Twist 2D (0,2) Theories Construction of 2D (0,2) CFTs

  11. WHY? MOTIVATIONS ▸ Generating novel 2D SCFTs ▸ 2D Theories are Closely Related to String Theories ▸ UV Completion of Non-Critical Strings

  12. WHY? MOTIVATIONS ▸ Generating novel 2D SCFTs ▸ 2D Theories are Closely Related to String Theories ▸ UV Completion of Non-Critical Strings IR UV 2D GLSM M string D eff >> 10 M KK Energy Extra + Gravity +

  13. WHY? MOTIVATIONS ▸ Generating novel 2D SCFTs ▸ 2D Theories are Closely Related to String Theories ▸ UV Completion of Non-Critical Strings IR UV 2D GLSM M string D eff >> 10 M KK Energy Extra + Gravity + ▸ Relevant for Time-Dependent and de Sitter Backgrounds Hellerman; Maloney, Silverstein; + Strominger

  14. WHAT’S THE PLAN? OUTLINE 1. GLSMs from F-theory on CY5 and Heterotic on CY4 2. Extra Sectors in F-theory 3. Dynamic GLSMs from 6D (1,0) SCFTs on 4-Manifolds 4. Anomaly Polynomials and Central Charges

  15. 1. THE ROAD FROM F-THEORY TO 2D F-THEORY ON CY5 CY5

  16. 1. THE ROAD FROM F-THEORY TO 2D F-THEORY ON CY5 Elliptically Fibered CY5 B 4 y 2 = x 3 + f ( B 4 ) x + g ( B 4 ) B 4

  17. 1. THE ROAD FROM F-THEORY TO 2D F-THEORY ON CY5 Elliptically Fibered CY5 B 4 y 2 = x 3 + f ( B 4 ) x + g ( B 4 ) B 4 O ( − 4 K B 4 ) O ( − 6 K B 4 ) Section: Homogeneous polynomial of a certain degree

  18. 1. THE ROAD FROM F-THEORY TO 2D F-THEORY ON CY5 Elliptically Fibered CY5 B 4 y 2 = x 3 + f ( B 4 ) x + g ( B 4 ) B 4 Non-Compact, Gravity decoupled O ( − 4 K B 4 ) O ( − 6 K B 4 ) Section: Homogeneous polynomial of a certain degree

  19. 1. THE ROAD FROM F-THEORY TO 2D F-THEORY ON CY5 Elliptically Fibered CY5 B 4 y 2 = x 3 + f ( B 4 ) x + g ( B 4 ) B 4 Non-Compact, Gravity decoupled X 3 O ( − 4 K B 4 ) O ( − 6 K B 4 ) Section: Homogeneous polynomial of a certain degree ∆ = 4 f 3 + 27 g 2 = 0 • 7 Branes wrap 2D Spacetime + Kähler Threefold X 3

  20. 1. THE ROAD FROM F-THEORY TO 2D F-THEORY ON CY5 Elliptically Fibered CY5 B 4 y 2 = x 3 + f ( B 4 ) x + g ( B 4 ) B 4 Non-Compact, Gravity decoupled X 3 O ( − 4 K B 4 ) O ( − 6 K B 4 ) Section: Homogeneous polynomial of a certain degree ∆ = 4 f 3 + 27 g 2 = 0 • 7 Branes wrap 2D Spacetime + Kähler Threefold X 3 Gauge theory on 7 Branes ( f, g, ∆ ) Vanishing Degrees of : Kodaira Classification (Compact)

  21. 1. THE STRATEGY 1 Z 10 SYM: Tr( F IJ F IJ ) + 2 i χ Γ I D I χ d 10 x � � L 10 D = 4 g 2 Y M (4D) Beasley, Heckman, Vafa; Donagi-Wijnholt 7 Branes • Isometry SO (1 , 9) → SO (1 , 7) × U (1) R → SO (1 , 1) × U (3) × U (1) R X 3

  22. 1. THE STRATEGY 1 Z 10 SYM: Tr( F IJ F IJ ) + 2 i χ Γ I D I χ d 10 x � � L 10 D = 4 g 2 Y M (4D) Beasley, Heckman, Vafa; Donagi-Wijnholt 7 Branes • Isometry SO (1 , 9) → SO (1 , 7) × U (1) R → SO (1 , 1) × U (3) × U (1) R X 3 • Topological Twist SO (1 , 1) × U (3) × U (1) R → SO (1 , 1) × SU (3) × U (1) X × U (1) R

  23. 1. THE STRATEGY 1 Z 10 SYM: Tr( F IJ F IJ ) + 2 i χ Γ I D I χ d 10 x � � L 10 D = 4 g 2 Y M (4D) Beasley, Heckman, Vafa; Donagi-Wijnholt 7 Branes • Isometry SO (1 , 9) → SO (1 , 7) × U (1) R → SO (1 , 1) × U (3) × U (1) R X 3 • Topological Twist SO (1 , 1) × U (3) × U (1) R → SO (1 , 1) × SU (3) × U (1) X × U (1) R J top = J X + 3 2 J R

  24. 1. THE STRATEGY 1 Z 10 SYM: Tr( F IJ F IJ ) + 2 i χ Γ I D I χ d 10 x � � L 10 D = 4 g 2 Y M (4D) Beasley, Heckman, Vafa; Donagi-Wijnholt 7 Branes • Isometry SO (1 , 9) → SO (1 , 7) × U (1) R → SO (1 , 1) × U (3) × U (1) R X 3 • Topological Twist SO (1 , 1) × U (3) × U (1) R → SO (1 , 1) × SU (3) × U (1) X × U (1) R χ (10) J top = J X + 3 A (10) 2 J R I V (0 , 0) Vector Multiplet: µ − v + { D (0 , 1) ¯ ψ + , (0 , 1) ∂ A Chiral Superfield (CS) Multiplets: φ (3 , 0) Φ (3 , 0) χ + , (3 , 0) Λ − , (0 , 2) λ − , (0 , 2) Fermi Multiplet:

  25. 1. THE STRATEGY 1 Z 10 SYM: Tr( F IJ F IJ ) + 2 i χ Γ I D I χ d 10 x � � L 10 D = 4 g 2 Y M (4D) Beasley, Heckman, Vafa; Donagi-Wijnholt 7 Branes • Isometry SO (1 , 9) → SO (1 , 7) × U (1) R → SO (1 , 1) × U (3) × U (1) R X 3 • Topological Twist SO (1 , 1) × U (3) × U (1) R → SO (1 , 1) × SU (3) × U (1) X × U (1) R χ (10) J top = J X + 3 A (10) 2 J R I V (0 , 0) Vector Multiplet: µ − v + { D (0 , 1) ¯ ψ + , (0 , 1) ∂ A Chiral Superfield (CS) Multiplets: φ (3 , 0) Φ (3 , 0) χ + , (3 , 0) Form degree on Λ − , (0 , 2) λ − , (0 , 2) the 3fold Fermi Multiplet:

  26. 1. THE EFFECTIVE THEORY: BULK ACTION ON 7 BRANES Z (Kinetic Terms) + (DTerms) − | E | 2 − | J | 2 � � L 2 D = X 3 J (3 , 1) = ∂ W top E (0 , 2) = ∂ W top = D (0 , 1) Φ (3 , 0) F (0 , 2) = [ D (0 , 1) , D (0 , 1) ] = F (0 , 2) ∂ Λ 0 , 2 ∂ Λ 3 , 1 Z Z � � � � Λ (0 , 2) ∧ D (0 , 1) Φ (3 , 0) Λ (3 , 1) ∧ F (0 , 2) W top = Tr + Tr X 3 X 3 ¯ ∂ A φ (3 , 0) = 0 F (0 , 2) = 0 ω X 3 ∧ ω X 3 ∧ F (1 , 1) + [ φ (3 , 0) , φ (0 , 3) ] = 0 2D GLSM Action & Equations of Motion

  27. 1. THE EFFECTIVE THEORY: BULK ACTION ON 7 BRANES Z (Kinetic Terms) + (DTerms) − | E | 2 − | J | 2 � � L 2 D = X 3 J (3 , 1) = ∂ W top E (0 , 2) = ∂ W top = D (0 , 1) Φ (3 , 0) F (0 , 2) = [ D (0 , 1) , D (0 , 1) ] = F (0 , 2) ∂ Λ 0 , 2 ∂ Λ 3 , 1 Z Z � � � � Λ (0 , 2) ∧ D (0 , 1) Φ (3 , 0) Λ (3 , 1) ∧ F (0 , 2) W top = Tr + Tr X 3 X 3 ¯ E.o.M: ∂ A φ (3 , 0) = 0 F (0 , 2) = 0 ω X 3 ∧ ω X 3 ∧ F (1 , 1) + [ φ (3 , 0) , φ (0 , 3) ] = 0 2D GLSM Action & Equations of Motion

  28. 1. THE EFFECTIVE THEORY: BULK ACTION ON 7 BRANES Z (Kinetic Terms) + (DTerms) − | E | 2 − | J | 2 � � L 2 D = X 3 J (3 , 1) = ∂ W top E (0 , 2) = ∂ W top = D (0 , 1) Φ (3 , 0) F (0 , 2) = [ D (0 , 1) , D (0 , 1) ] = F (0 , 2) ∂ Λ 0 , 2 ∂ Λ 3 , 1 Z Z � � � � Λ (0 , 2) ∧ D (0 , 1) Φ (3 , 0) Λ (3 , 1) ∧ F (0 , 2) W top = Tr + Tr X 3 X 3 ¯ E.o.M: ∂ A φ (3 , 0) = 0 F (0 , 2) = 0 ω X 3 ∧ ω X 3 ∧ F (1 , 1) + [ φ (3 , 0) , φ (0 , 3) ] = 0 Susy variations match the Action & E.o.M. 2D GLSM Action & Equations of Motion

  29. 1. THE EFFECTIVE THEORY: BULK ACTION ON 7 BRANES Note: we presented here an action with all the KK modes, but at low energy only 0-modes appear, counted by bundle cohomologies on X 3 Z (Kinetic Terms) + (DTerms) − | E | 2 − | J | 2 � � L 2 D = X 3 J (3 , 1) = ∂ W top E (0 , 2) = ∂ W top = D (0 , 1) Φ (3 , 0) F (0 , 2) = [ D (0 , 1) , D (0 , 1) ] = F (0 , 2) ∂ Λ 0 , 2 ∂ Λ 3 , 1 Z Z � � � � Λ (0 , 2) ∧ D (0 , 1) Φ (3 , 0) Λ (3 , 1) ∧ F (0 , 2) W top = Tr + Tr X 3 X 3 ¯ E.o.M: ∂ A φ (3 , 0) = 0 F (0 , 2) = 0 ω X 3 ∧ ω X 3 ∧ F (1 , 1) + [ φ (3 , 0) , φ (0 , 3) ] = 0 Susy variations match the Action & E.o.M. 2D GLSM Action & Equations of Motion

  30. 1. THE EFFECTIVE THEORY FROM HETEROTIC ON CY4 Y 4 ∼ = O ( K X 3 ) → X 3 Relation to F-theory Z (Kinetic Terms) + (DTerms) − | E | 2 − | J | 2 � � L 2 D = Y 4 E (0 , 2) = ∂ W top ∂ W top = F ( even ) = F ( odd ) J (0 , 2) = Z 2 : Ω (4 , 0) 7! � Ω (4 , 0) (0 , 2) (0 , 2) ∂ Λ ( odd ) ∂ Λ ( even ) (0 , 2) (0 , 2) Z � � F (0 , 2) → F ( even ) + F ( odd ) Ω (4 , 0) ∧ Tr Λ (0 , 2) ∧ F (0 , 2) W top = (0 , 2) (0 , 2) Y 4 F (0 , 2) = ω Y 4 x F (1 , 1) = 0 E.o.M. 2D GLSM Action & Equations of Motion

  31. 1. BACK TO F-THEORY: LOCALIZED MATTER some bundles on X 1 3 X 2 3 X 2 Q ∈ K 1 / 2 3 ⊗ R 1 ⊗ R 2 S Q c ∈ K 1 / 2 ⊗ R ∨ 1 ⊗ R ∨ 2 S B 4 Ψ ∈ Ω (0 , 1) ( K 1 / 2 ⊗ R 1 ⊗ R 2 ) S S X 1 Ψ c ∈ Ω (0 , 1) ( K 1 / 2 ⊗ R ∨ 1 ⊗ R ∨ 2 ) 3 S S Z h Q c , Λ (0 , 2) Q i + Ψ c , Q c , ⌦ � � ↵ ⌦ � � ↵ W top,S = ∂ + A 1 + A 2 Q ∂ + A 1 + A 2 Ψ + S S Surface • Triple and Quartic Intersections localizing on curves and points Z f αβγ δ Ψ ( α ) δ Q ( β ) δ Q ( γ ) W top, Σ = Σ ⇣ δ Ψ ( α ) δ Q ( β ) δ Q ( γ ) δ Q ( δ ) ⌘ | p W top,p = h αβγδ

  32. 2. AN EXAMPLE y 2 = x 3 + f ( v, X 3 ) x + g ( v, x 3 ) B 4 = N v → X 3 g ( v, X 3 ) ∼ v 5 g ( X 3 ) f ( v, X 3 ) ∼ v 4 f ( X 3 ) X 3 = P 2 × P 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend