fermion
play

FERMION DARK MATTER Accepted to JHEP [arXiv:1106.2162] Cornell - PowerPoint PPT Presentation

GOLDSTONE FERMION DARK MATTER Accepted to JHEP [arXiv:1106.2162] Cornell University In collaboration with B. Bellazzini, C. Cski, J. Hubisz, and J. Shao SUSY , 29 August 2011 1 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark


  1. GOLDSTONE FERMION DARK MATTER Accepted to JHEP [arXiv:1106.2162] Cornell University In collaboration with B. Bellazzini, C. Csáki, J. Hubisz, and J. Shao SUSY , 29 August 2011 1 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 1/23

  2. The WIMP Miracle Contains factors of M Pl , s 0 , · · ·   � x f � − 1 � � g ∗ � σ v � 0   Ω DM h 2 ≈ 0 . 1 2       3 × 10 − 26 cm 3 / s 20 80   � � α 2 v ∼ ( 100 GeV ) 2 ❲✐t❤✐♥ ♦r❞❡rs ♦❢ ♠❛❣♥✐t✉❞❡✦ 2 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 2/23

  3. Ω h 2 vs direct detection Tension between annihilation cross section and direct detection bounds σ SI ∼ 7 . 0 × 10 − 9 pb σ ann. ∼ 0 . 1 pb 50 GeV WIMP Typical strategy: pick parameters such that σ SI is suppressed , then use tricks to enhance σ ann. . 3 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 3/23

  4. Ω h 2 vs direct detection CMSSM 10  42 Ruled out 10  43 Well tempered neutralino h 0 resonance 10  44 σ SI in cm 2 slepton co-annihilations 10  45 A 0 resonance 10  46 stop co-annihilations 10  47 0 200 400 600 800 M DM in GeV 1104.3572 4 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 4/23

  5. Motivation I: a natural WIMP Typical MSSM WIMP: σ SI too large Want to naturally suppress direct detection while maintaining ‘miracle’ of successful abundance. If LSP is part of a Goldstone multiplet , ( s + ia , χ ) , additional suppression from derivative coupling. • Like a weak scale axino, but unrelated to CP • Like singlino DM, but global symmetry broken in SUSY limit 5 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 5/23

  6. Motivation I: a natural WIMP Annihilation : p -wave decay to Goldstones � 2 � T f � � m χ 1 χγ µ γ 5 χ∂ µ a f ¯ ⇒ � σ v � ≈ ≈ 1 pb f 2 m χ Direct detection : CP-even Goldstone mixing with Higgs � m χ v � 2 m χ v ≈ O ( 10 − 45 cm 2 ) σ MSSM ∼ 0 . 01 ⇒ σ SI = SI f 2 f 2 6 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 6/23

  7. Motivation II: Buried Higgs Idea : Light Higgs buried in QCD background ✭✭✭✭✭✭✭✭ ✭ f 2 h 2 ( ∂ a ) 2 1 Global symmetry at f ∼ 500 GeV with coupling jet a h a jet 0906.3026, 1012.1316, 1012.1347 Can we bury the Higgs through a decays, but dig up dark matter in χ ? 7 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 7/23

  8. The Goldstone Supermultiplet sGoldstone Goldstone boson Goldstone fermion √ A = 1 � � 2 θ χ + θ 2 F √ s + i a + 2 Carries the low-energy degrees of freedom of the UV fields, � f 2 = Φ i = f i e q i A / f q 2 i f 2 i i ✘✘✘ ✘ SUSY ⇒ explicit s mass, m χ ≈ q i � F i � / f , a massless 8 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 8/23

  9. Interactions: Overview coupling to a coupling to H coupling to g , γ Kähler potential scalar NL Σ M Mixing Kähler kinetic Goldstone coupling to a MSSM Fermion interactions Explicit Anomaly breaking Superpotential 9 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 9/23

  10. Interactions: NL Σ M Kähler potential Non-linear realization of the global U(1) ⇒ Kähler interactions of the Goldstone multiplet: ∂ 2 K q 1 � f ( A + A † ) + · · · q 3 i f 2 ∂ A ∂ A † = 1 + b 1 b 1 = i qf 2 i Note K = K ( s ) , manifest shift-invariance. √ � � � 1 � 2 2 ( ∂ s ) 2 + 1 2 ( ∂ a ) 2 + i χγ µ ∂ µ χ L = 1 + b 1 f s + · · · 2 ¯ √ � � 1 1 2 √ χγ µ γ 5 χ ) ∂ µ a + · · · + b 1 f + b 2 f 2 s + · · · (¯ 2 2 b 1 controls the annihilation cross section. Phys. Lett. B 87 (1979) 203 10 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 10/23

  11. Interactions: scalar mixing MSSM fields are uncharged under the global U(1), but may mix with the Goldstone multiplet through higher-order terms in K : � A + A † � � A + A † � 2 ( c 2 H u H d + · · · ) K = 1 ( c 1 H u H d + · · · ) + 1 2 f 2 f The new scalar interactions take the form �   � 1 2 ( ∂ a ) 2 + 1 v χ/  1 + c h  L ⊃ f h + · · · 2 ¯ ∂χ c h depends on c i and the Higgs mixing angles. c h controls direct detection 11 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 11/23

  12. Interactions: kinetic mixing The higher order terms in K also induce kinetic � H – χ mixing. χγ µ ∂ µ � χγ µ ∂ µ � H 0 H 0 L ⊃ i ǫ u ¯ u + i ǫ d ¯ d + h.c. where ǫ ∼ v / f . For large µ , χ has a small � H of order vm χ / f µ . Mixing with other MSSM fields is suppressed. Assuming MFV, A + A † � � Y u � � K = 1 ¯ QH u U + · · · f M u where the scales M u , d ,ℓ are unrelated to f or v and can be large and dependent on the UV completion 12 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 12/23

  13. Interactions: anomaly Fermions Ψ charged under global U(1) and Standard Model g � � L an ⊃ c an aG a µν � G a χ G a µν σ µν γ 5 λ a √ µν + 2 ¯ f 2 a � y i f � √ N Ψ c an = α � = α 2 8 π q Ψ N Ψ 8 π m Ψ i g i √ Also γγ Assumed: degenerate m Ψ and y = m Ψ q Ψ / f 2 Integrating out λ a generates χ couplings to gluons � � � � c 2 c 2 χχ GG − i ¯ χγ 5 χ G � an an L ⊃ − ¯ G 2 M λ f 2 2 M λ f 2 These contribute to collider and astro operators. 13 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 13/23

  14. Interactions: explicit breaking ✟ Include explicit ✟✟ U ( 1 ) spurion R α = λ α f with λ α ≪ 1 U ( 1 ) = f 2 � R − α e aA / f W ✟✟ α Perserve SUSY ⇒ at least two spurions with opposite charge. This generates m a = m χ = m s and couplings m a χγ 5 χ + m a 8 f 2 ( α 2 + αβ + β 2 ) a 2 ¯ √ i a ¯ L ⊃ − 2 f ( α + β ) χχ 2 � �� � � �� � ρ δ By integration by parts this is equivalent to a shift in the b 1 coefficient from the Kähler potential 14 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 14/23

  15. Main parameters coupling to a coupling to H coupling to g , γ Kähler potential c h scalar NL Σ M b 1 Mixing Kähler σ SI σ ann kinetic Goldstone coupling to a MSSM Fermion m χ ; SSB at f m a collider, astro Explicit c an δ Anomaly breaking Superpotential 15 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 15/23

  16. Parameter space scan Abundance : � σ v � ≈ b 14 m 2 T f χ f 4 ≈ 1 pb 8 π m χ p -wave: b 1 � 1, all other parameters take natural values Parameter Description Scan Range f Global symmetry breaking scale 500 GeV − 1 . 2 TeV ✘ m χ Goldstone fermion mass ( ✘✘ SUSY) 50 − 150 GeV m a Goldstone boson mass 8 GeV – f / 10 b 1 χχ a coupling [ 0 , 2 ] c an Anomaly coefficient 0 . 06 c h Higgs coupling [ − 1 , 1 ] χγ 5 χ coupling δ Explicit breaking ia ¯ 3 / 2 � 1 � � � 2 ( ∂ a ) 2 + 1 v b 1 ∂ µ a + c an χγ µ γ 5 χ aG � χ/ χγ 5 χ L ⊃ 2 ¯ ∂χ f h + √ ¯ √ G + i δ a ¯ c h 2 2 f 2 f 16 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 16/23

  17. Contours of fixed Ω Dominant contribution Ω h 2 = 0 . 11 ✟ Kähler, anomaly, ✟✟ U(1) 3.5 g χ m a χ a m χ 3.0 Coupling b 1 χ χ g a 2.5 Subleading Mixing with Higgs 10 % 2.0 χ χ a h 1.5 40 % χ χ h h 70 % 1.0 Negligible 60 80 100 120 140 t , u χχ → s → aa , χχ → hh m χ [GeV] 17 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 17/23

  18. Direct Detection Higgs exchange typically dominates by a factor of O ( 10 3 ) . � 115 GeV � 4 � � 2 · 700 GeV 100 GeV · µ χ m χ GeV · λ N SI ≈ 3 · 10 − 45 cm 2 c 2 σ H h 0 . 5 m h f Compare this to the MSSM Higgs with L = 1 2 cg ¯ χχ h : ∼ c 2 g 2 λ 2 N µ 2 m 2 ≈ c 2 × 10 − 42 cm 2 σ MSSM N SI m 2 2 π h v 2 Natural suppression : ( m χ v / f 2 ) 2 due to Goldstone nature 18 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 18/23

  19. Parameter space scan Direct Detection 1 x 10 -43 5 x 10 -44 Ruled out XENON 1 x 10 -44 σ [cm 2 ] 5 x 10 -45 500 < f < 700 GeV 700 < f < 800 GeV 800 < f < 900 GeV 1 x 10 -45 5 x 10 -46 900 < f < 1000 GeV 1 x 10 -46 150 100 m χ [GeV] 19 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 19/23

  20. Indirect detection & Colliders p spectrum : below PAMELA ¯ • (Einsasto DM Halo profile) 1104.3572 γ -ray line search : O ( 10 ) smaller than bound • χχ → a → γγ Diffuse γ -ray spectrum : O ( 10 ) smaller than bound • χχ → a → gg → π ′ s Photo-production from annihilation : σ 3x lower than bound • Low mass DM m χ � 60 GeV, constrains bb decays ISR monojets at colliders : dim-7 operators too small L ⊃ − c an2 χχ GG − ic an2 χγ 5 χ G � 2 M λ f 2 ¯ 2 M λ f 2 ¯ G 20 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 20/23

  21. Non-standard Higgs decays Hard to completely bury the Higgs. LEP: Br(SM) � 20% ⇒ m h � 110 GeV f = 500 GeV, m a = 45 GeV, m χ = 100 GeV, c h = 2 1.0 Higgs branching ratio 0.8 WW ∗ aa 0.6 0.4 b ¯ b ZZ ∗ 0.2 0.0 100 110 120 130 140 150 160 Higgs mass m h [GeV] 21 / 23 Flip Tanedo pt267@cornell.edu Goldstone Fermion Dark Matter 21/23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend