fate of kosterlitz thouless physics in driven open
play

Fate of Kosterlitz-Thouless Physics in Driven Open Quantum Systems - PowerPoint PPT Presentation

Functional Renormalization - from quantum gravity and dark energy to ultracold atoms and condensed matter March 07-10, 2017 IWH Heidelberg, Germany Fate of Kosterlitz-Thouless Physics in Driven Open Quantum Systems Sebastian Diehl Institute


  1. Functional Renormalization - from quantum gravity and dark energy to ultracold atoms and condensed matter March 07-10, 2017 IWH Heidelberg, Germany Fate of Kosterlitz-Thouless Physics in Driven Open Quantum Systems Sebastian Diehl Institute for Theoretical Physics, University of Cologne collaboration: L. Sieberer, E. Altman (Berkeley) : G. Wachtel (Toronto) L. He (Cologne)

  2. Universality in low dimensions: 2D • continuous phase rotations: low temperature high temperature • correlations h φ ( r ) φ ∗ (0) i ⇠ r − α ∼ e − r/ ξ • superfluidity ρ s 6 = 0 ρ s = 0 • KT transition: unbinding of vortex-antivortex pairs … also for out-of-equilibrium systems? … new universal phenomena tied to non-equilibrium?

  3. Experimental Platform: Exciton-Polariton Systems Imamoglu et al., PRA 1996 Kasprzak et al., Nature 2006 photons E relaxation excitons pump lower polaritons k loss • phenomenological description: stochastic driven-dissipative Gross-Pitaevskii-Eq � r 2  � 2 m � µ + i ( γ p � γ l ) + ( λ � i κ ) | φ | 2 i ∂ t φ = φ + ζ u h ζ ⇤ ( t, x ) ζ ( t 0 , x 0 ) i = γδ ( t � t 0 ) δ ( x � x 0 ) pump & loss rates two-body loss propagation elastic collisions microscopic derivation and linear fluctuation analysis: Szymanska, Keeling, Littlewood PRL (04, 06); PRB (07)); Wouters, Carusotto PRL (07,10)

  4. Experimental Platform: Exciton-Polariton Systems • Bose condensation seen despite non-equilibrium conditions stationary state! Kasprzak et al., Nature 2006 • stochastic driven-dissipative Gross-Pitaevskii-Eq � r 2  � Szymanska, Keeling, Littlewood PRL (04, 06); 2 m � µ + i ( γ p � γ l ) + ( λ � i κ ) | φ | 2 i ∂ t φ = φ + ζ u PRB (07)); Wouters, Carusotto PRL (07,10) • mean field • neglect noise • homogeneous solution φ ( x , t ) = φ 0 • naively, just as Bose condensation in equilibrium! • Q: What is “non-equilibrium” about it?

  5. “What is non-equilibrium about it?” • rewrite stochastic Gross-Pitaevski equation i ∂ t φ c = δ H c − i δ H d + ξ δφ ∗ δφ ∗ c c Z d d x [ r α | φ c | 2 + K α | r φ c | 2 + λ α | φ ∗ c φ c | 4 ] , H α = α = c, d u • couplings located in the complex plane: Im incoherent/ irrev. dynamics ⇔ H d example: two-body processes Re λ elastic two-body collisions u Im λ u inelastic two-body losses Re coherent/ reversible dynamics ⇔ H c

  6. “What is non-equilibrium about it?”: Field theory • Representation of stochastic Langevin dynamics as MSRJD functional integral i ∂ t φ c = δ H c − i δ H d Z ⇔ q ] e iS [ φ c , φ ∗ c , φ q , φ ∗ q ] + ξ Z = D [ φ c , φ ∗ c , φ q , φ ∗ δφ ∗ δφ ∗ c c δ ¯ Z ⇢ S [ φ c ] � Z ¯ { φ ∗ c i ∂ t φ c − H c + i H d } S = S = φ ∗ + c.c. + i 2 γφ ∗ q φ q q δφ ∗ t, x t, x c • Equilibrium conditions signalled by presence of symmetry under: H. K. Janssen (1976); C. Aron et al, J Stat. Mech (2011) generalisation to quantum systems T β φ c ( t, x ) = φ ∗ c ( − t, x ) , (Keldysh functional integral) q ( − t, x ) + i L. Sieberer, A. Chiochetta, U. Tauber, T β φ q ( t, x ) = φ ∗ c ( − t, x ) 2 T ∂ t φ ∗ A. Gambassi, SD , PRB (2015) • Implication 1 [equivalence]: (classical) fluctuation-dissipation c ( ω , q ) i = 2 T h φ c ( ω , q ) φ ∗ ω [ h φ c ( ω , q ) φ ∗ q ( ω , q ) � h φ c ( ω , q ) φ ∗ q ( ω , q ) i correlations responses (imaginary part) ➡ equilibrium conditions as a symmetry

  7. “What is non-equilibrium about it?”: Geometric interpretation • Implication 2: geometric constraint equilibrium dynamics non-equilibrium dynamics no symmetry symmetry Im Im protected Re Re • • coherent and dissipative dynamics may coherent and driven-dissipative dynamics do occur simultaneously occur simultaneously • • but they are not independent they result from different dynamical resources ➡ what are the physical consequences of the spread in the complex plane? Review: L. Sieberer, M. Buchhold, SD, Keldysh Field Theory for Driven Open Quantum Systems , Reports on Progress in Physics (2016)

  8. Outline • mapping of the driven-dissipative GPE to KPZ-type equation • fundamental difference to conventional context: KPZ variable: condensate phase, compact ➡ weak non-equilibrium drive: two competing scales • smooth non-equilibrium fluctuations -> emergent KPZ length scale L ∗ • non-equilibrium vortex physics -> emergent length scale L v • result: different sequence in 2D and 1D ➡ strong non-equilibrium drive: new first order phase transition (one dimension)

  9. Low frequency phase dynamics • driven-dissipative stochastic GPE � r 2  � 2 m � µ + i ( γ p � γ l ) + ( λ � i κ ) | φ | 2 i ∂ t φ = φ + ζ u • integrate out fast amplitude fluctuations: φ ( x , t ) = ( M 0 + χ ( x , t )) e i θ ( x ,t ) see also: G. Grinstein et al., PRL 1993 ∂ t θ = D r 2 θ + λ ( r θ ) 2 + ξ particles deposited h ( x , t ) λ at rate phase diffusion phase nonlinearity Markov noise Kardar, Parisi, Zhang, form of the KPZ equation gravitational PRL (1986) field • spin wave becomes non-linear x surface roughening, fire spreading, • nonlinearity: single-parameter measure of non-equilibrium strength bacterial colony growth.. (ruled out in equilibrium by symmetry) Im Im λ = 0 λ 6 = 0 Re Re non-equilibrium equilibrium

  10. 2 Dimensions L v E. Altman, L. Sieberer, L. Chen, SD, J. Toner, PRX (2015) G. Wachtel, L. Sieberer, SD, E. Altman, PRB (2016) L. Sieberer, G. Wachtel, E. Altman, SD, PRB (2016)

  11. Im Physical implication I: Smooth KPZ fluctuations λ 6 = 0 • RG flow of the effective dimensionless KPZ coupling parameter Re non-equilibrium g 2 = λ 2 ∆ D 3 FRG analysis: Canet, Chate, Delamotte, Wschebor, PRL (2010), PRE (2012) g strong coupling: disordered / rough non-equilibrium phase weak coupling: equilibrium phase g ( L ∗ ) = 1 1 1 2 3 d • general trend: non-equilibrium effects in systems with soft mode are • enhanced in d = 1,2 • softened in d = 3 (below a threshold)

  12. Im Physical implication I: Smooth KPZ fluctuations λ 6 = 0 • RG flow of the effective dimensionless KPZ coupling parameter Re non-equilibrium g 2 = λ 2 ∆ D 3 FRG analysis: Canet, Chate, Delamotte, Wschebor, PRL (2010), PRE (2012) g strong coupling: disordered / rough non-equilibrium phase weak coupling: equilibrium phase g ( L ∗ ) = 1 1 1 2 3 d • 2D: implication: a length scale is generated • exponentially large for 16 π L ∗ = a 0 e g 2 • weak nonequilibrium λ • small noise level ∆ microscopic (healing) length

  13. Physical implications I: Absence of quasi-LRO • long-range behavior of two-point/ spatial coherence function: h φ ⇤ ( r ) φ (0) i ⇡ n 0 e �h [ θ ( x ) � θ (0)] 2 i leading order cumulant expansion 16 π • L ∗ = a 0 e g 2 generated length scale distinguishes two regimes: h φ ∗ ( r ) φ (0) i sub-exponential non- equilibrium disordered (rough) phase ∼ r − α e − r 2 χ , χ ≈ 0 . 37 ( d = 2) algebraic quasi-long range order (Kosterlitz-Thouless phase) r L ∗ ➡ algebraic order absent in any two-dimensional driven open system at the largest distances ➡ but crossover scale exponentially large for small deviations from equilibrium

  14. Physical implications II: Non-equilibrium Kosterlitz-Thouless • KPZ equation for phase variable ∂ t θ = D r 2 θ + λ ( r θ ) 2 + ξ anti-vortex • compact nature of phase allows for vortex defects in 2D! vortex • in 2D equilibrium: perfect analogy between vortices and electric charges • log(r) interactions, forces 1 / ( ✏ r ) Z ✏ − 1 • dielectric constant = superfluid stiffness d 2 r r P ( r ) P = ( ε − 1) E ext = T>T KT $ T<T KT $ Normal$=$plasma$ superfluid$=$dipole$gas$$ superfluid = dipole gas normal fluid = plasma metallic$screening$ (“vortex$insulator”)$ metallic screening ✏ − 1 → 0 ✏ − 1 > 0 ➡ how is this scenario modified in the driven system?

  15. Duality approach • KPZ equation for phase variable ∂ t θ = D r 2 θ + λ ( r θ ) 2 + ξ ψ t, x = √ ρ t, x e i θ t, x • phase compactness = local discrete gauge invariance of θ t, x 7! θ t, x + 2 π n t, x θ t, x ∈ [0 , 2 π ) , n t, x ∈ Z ➡ needs to be taught to the KPZ equation: • deterministic part: lattice regularization  � D sin( θ x − θ x + a ) + λ X ∂ t θ x = − 2 (cos( θ x − θ x + a ) − 1) + η x a unit lattice direction =: L [ θ ] t, x noise deterministic

  16. Duality approach • KPZ equation for phase variable ∂ t θ = D r 2 θ + λ ( r θ ) 2 + ξ ψ t, x = √ ρ t, x e i θ t, x • phase compactness = local discrete gauge invariance of θ t, x 7! θ t, x + 2 π n t, x θ t, x ∈ [0 , 2 π ) , n t, x ∈ Z ➡ needs to be taught to the KPZ equation: • temporal part: stochastic update θ t, x ∈ [0 , ✓ t + ✏ , x = ✓ t, x + ✏ ( L [ ✓ ] t, x + ⌘ t, x ) + 2 ⇡ n t, x • NB: phase can jump, continuum limit eps -> 0 ill defined, derivatives discrete θ t, x ∈ [0 , 2 π ) θ t, x ∈ [0 , 2 π )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend