fadsdfasadfs ordered weighted average optimization in
play

fadsdfasadfs Ordered Weighted Average Optimization in - PowerPoint PPT Presentation

fadsdfasadfs Ordered Weighted Average Optimization in Multiobjective Spanning Tree Problems andez 1 Elena Fern Miguel Pozo 2 Justo Puerto 2 1 Universitat Polit` ecnica de Catalunya - BarcelonaTech 2 Universidad de Sevilla The Ordered Weighted


  1. fadsdfasadfs Ordered Weighted Average Optimization in Multiobjective Spanning Tree Problems andez 1 Elena Fern´ Miguel Pozo 2 Justo Puerto 2 1 Universitat Polit` ecnica de Catalunya - BarcelonaTech 2 Universidad de Sevilla

  2. The Ordered Weighted Average Operator (OWA) • Feasible domain Q ⊆ R n • f i : Q → R , i ∈ P = { 1 , . . . , p } objective functions. • ω ∈ R p + : non-negative weights. • y = f ( x ) ∈ R p , with x ∈ Q . • σ : y σ 1 ≥ . . . ≥ y σ p ( ⇔ f σ i ( x ) ≥ f σ i +1 ( x )). • Ordered Weighted Average Operator (OWA): OWA ( f ,ω ) ( x ) = ω ′ y σ • OWA optimization Problem (OWAP): min x ∈ Q OWA ( f ,ω ) ( x )

  3. The Ordered Weighted Average Operator (OWA) • Feasible domain Q ⊆ R n • f i : Q → R , i ∈ P = { 1 , . . . , p } objective functions. • ω ∈ R p + : non-negative weights. • y = f ( x ) ∈ R p , with x ∈ Q . • σ : y σ 1 ≥ . . . ≥ y σ p ( ⇔ f σ i ( x ) ≥ f σ i +1 ( x )). • Ordered Weighted Average Operator (OWA): OWA ( f ,ω ) ( x ) = ω ′ y σ • OWA optimization Problem (OWAP): min x ∈ Q OWA ( f ,ω ) ( x )

  4. The Ordered Weighted Average Operator (OWA) • Feasible domain Q ⊆ R n • f i : Q → R , i ∈ P = { 1 , . . . , p } objective functions. • ω ∈ R p + : non-negative weights. • y = f ( x ) ∈ R p , with x ∈ Q . • σ : y σ 1 ≥ . . . ≥ y σ p ( ⇔ f σ i ( x ) ≥ f σ i +1 ( x )). • Ordered Weighted Average Operator (OWA): OWA ( f ,ω ) ( x ) = ω ′ y σ • OWA optimization Problem (OWAP): min x ∈ Q OWA ( f ,ω ) ( x )

  5. The Ordered Weighted Average Operator (OWA) • Feasible domain Q ⊆ R n ← − Combinatorial Object • f i : Q → R , i ∈ P = { 1 , . . . , p } objective functions. • ω ∈ R p + : non-negative weights. • y = f ( x ) ∈ R p , with x ∈ Q . • σ : y σ 1 ≥ . . . ≥ y σ p ( ⇔ f σ i ( x ) ≥ f σ i +1 ( x )). • Ordered Weighted Average Operator (OWA): OWA ( f ,ω ) ( x ) = ω ′ y σ • OWA optimization Problem (OWAP): min x ∈ Q OWA ( f ,ω ) ( x )

  6. The Ordered Weighted Average Operator (OWA) • Feasible domain Q ⊆ R n ← − Combinatorial Object • C i : Q → R , i ∈ P = { 1 , . . . , p } f i ( x ) = C i x , C i ∈ R n linear • ω ∈ R p + : non-negative weights. • y = f ( x ) ∈ R p , with x ∈ Q . • σ : y σ 1 ≥ . . . ≥ y σ p ( ⇔ f σ i ( x ) ≥ f σ i +1 ( x )). • Ordered Weighted Average Operator (OWA): OWA ( f ,ω ) ( x ) = ω ′ y σ • OWA optimization Problem (OWAP): min x ∈ Q OWA ( f ,ω ) ( x )

  7. The Ordered Weighted Average Operator (OWA) • Feasible domain Q ⊆ R n ← − Combinatorial Object • C i : Q → R , i ∈ P = { 1 , . . . , p } f i ( x ) = C i x , C i ∈ R n linear • ω ∈ R p + : non-negative weights. • y = Cx , with x ∈ Q , C ∈ R p × n . • σ : y σ 1 ≥ . . . ≥ y σ p ( ⇔ f σ i ( x ) ≥ f σ i +1 ( x )). • Ordered Weighted Average Operator (OWA): OWA ( f ,ω ) ( x ) = ω ′ y σ • OWA optimization Problem (OWAP): min x ∈ Q OWA ( f ,ω ) ( x )

  8. The Ordered Weighted Average Operator (OWA) • Feasible domain Q ⊆ R n ← − Combinatorial Object • C i : Q → R , i ∈ P = { 1 , . . . , p } f i ( x ) = C i x , C i ∈ R n linear • ω ∈ R p + : non-negative weights. • y = Cx , with x ∈ Q , C ∈ R p × n . • σ : y σ 1 ≥ . . . ≥ y σ p ( ⇔ C σ i x ≥ C σ i +1 x ). • Ordered Weighted Average Operator (OWA): OWA ( f ,ω ) ( x ) = ω ′ y σ • OWA optimization Problem (OWAP): min x ∈ Q OWA ( f ,ω ) ( x )

  9. The Ordered Weighted Average Operator (OWA) • Feasible domain Q ⊆ R n ← − Combinatorial Object • C i : Q → R , i ∈ P = { 1 , . . . , p } f i ( x ) = C i x , C i ∈ R n linear • ω ∈ R p + : non-negative weights. • y = Cx , with x ∈ Q , C ∈ R p × n . • σ : y σ 1 ≥ . . . ≥ y σ p ( ⇔ C σ i x ≥ C σ i +1 x ). • Ordered Weighted Average Operator (OWA): OWA ( C ,ω ) ( x ) = ω ′ y σ • OWA optimization Problem (OWAP): min x ∈ Q OWA ( f ,ω ) ( x )

  10. The Ordered Weighted Average Operator (OWA) • Feasible domain Q ⊆ R n ← − Combinatorial Object • C i : Q → R , i ∈ P = { 1 , . . . , p } f i ( x ) = C i x , C i ∈ R n linear • ω ∈ R p + : non-negative weights. • y = Cx , with x ∈ Q , C ∈ R p × n . • σ : y σ 1 ≥ . . . ≥ y σ p ( ⇔ C σ i x ≥ C σ i +1 x ). • Ordered Weighted Average Operator (OWA): OWA ( C ,ω ) ( x ) = ω ′ y σ • OWA optimization Problem (OWAP): min x ∈ Q OWA ( C ,ω ) ( x )

  11. Ordered Median Operator Q ⊆ R n , d ∈ R n cost vector, ω ∈ R n weights. For x ∈ Q , σ : permutation s.t. d σ j x σ j ≥ d σ j +1 x σ j +1 � OM ( d ,ω ) ( x ) = ω j d σ j x σ j j ∈ P

  12. Ordered Median Operator Q ⊆ R n , d ∈ R n cost vector, ω ∈ R n weights. For x ∈ Q , σ : permutation s.t. d σ j x σ j ≥ d σ j +1 x σ j +1 � OM ( d ,ω ) ( x ) = ω j d σ j x σ j j ∈ P ( C i ) ′ = d i e i , i ∈ { 1 , . . . , n } . C = Diag ( d ) OM ( d ,ω ) ( x ) = OWA ( Diag ( d ) ,ω ) ( x )

  13. Ordered Median Operator Q ⊆ R n , d ∈ R n cost vector, ω ∈ R n weights. For x ∈ Q , σ : permutation s.t. d σ j x σ j ≥ d σ j +1 x σ j +1 � OM ( d ,ω ) ( x ) = ω j d σ j x σ j j ∈ P ( C i ) ′ = d i e i , i ∈ { 1 , . . . , n } . C = Diag ( d ) OM ( d ,ω ) ( x ) = OWA ( Diag ( d ) ,ω ) ( x ) Also generalizes the Vector Assignment Ordered Median Given cost d : fractions of sorted elements of solutions.

  14. In this presentation ... The OWAP for Spanning Trees Q = { x : defines a spanning tree }

  15. Example fadsafds ω ′ = (0 . 8 , 0 , 0 . 2) (3 , 4 , 1) 2 3 (1 , 2 , 1) (1 , 3 , 4) (4 , 1 , 2) 1 (1 , 2 , 1) (3 , 3 , 2) 4 (2 , 3 , 4) (4 , 2 , 1) 6 5 (1 , 2 , 3)

  16. Example 2 3 fadsafds ω ′ = (0 . 8 , 0 , 0 . 2) 1 4 (3 , 4 , 1) 6 5 2 3 (1 , 2 , 1) (1 , 3 , 4) (4 , 1 , 2) 1 (1 , 2 , 1) (3 , 3 , 2) 4 fadsafds Cx = (10 , 11 , 8) fadsafdabs σ = (2 , 1 , 3) (2 , 3 , 4) (4 , 2 , 1) 6 5 fadsafdsValue (1 , 2 , 3) 0 . 8( C 2 x ) + 0( C 1 x ) + 0 . 2( C 3 x ) = = 0 . 8 × 11 + 0 . 2 × 8 Value = 10 . 4

  17. Our Formulation of the OWAP x : Defines solutions in the domain Q . ( y i = C i x : Value of objective function i ) F., Pozo, Puerto (2014)

  18. Our Formulation of the OWAP x : Defines solutions in the domain Q . ( y i = C i x : Value of objective function i ) � 1 if cost function i occupies position j in the ordering, z ij = 0 otherwise. F., Pozo, Puerto (2014)

  19. Our Formulation of the OWAP x : Defines solutions in the domain Q . ( y i = C i x : Value of objective function i ) � 1 if cost function i occupies position j in the ordering, z ij = 0 otherwise. θ j : Value of the objective occupying position j in the ordering. F., Pozo, Puerto (2014)

  20. Our Formulation of the OWAP F θ : � V = min ω j θ j j ∈ P � z ij = 1 j ∈ P s . t . i ∈ P � z ij = 1 i ∈ P j ∈ P θ j ≥ θ j +1 j ∈ P : j < p � z ij ( C i x ) θ j = i , j ∈ P i ∈ P x ∈ Q θ j ≥ 0 j ∈ P z ∈ { 0 , 1 } p × p

  21. Our Formulation of the OWAP F θ : � V = min ω j θ j j ∈ P � s . t . z ij = 1 j ∈ P i ∈ P � z ij = 1 i ∈ P j ∈ P θ j ≥ θ j +1 j ∈ P : j < p C i x ≤ θ j + M (1 − z ij ) i , j ∈ P x ∈ Q θ j ≥ 0 j ∈ P z ∈ { 0 , 1 } p × p

  22. Our Formulation of the OWAP F θ : � V = min ω j θ j j ∈ P � s . t . z ij = 1 j ∈ P i ∈ P � z ij = 1 i ∈ P j ∈ P θ j ≥ θ j +1 j ∈ P : j < p � C i x ≤ θ j + M (1 − z ik ) i , j ∈ P k ≥ j x ∈ Q θ j ≥ 0 j ∈ P z ∈ { 0 , 1 } p × p

  23. Galand-Spanjaard [Galand, Spanjaard, 2012] x : Defines solutions in the domain Q . � 1 if cost function i occupies position j in the ordering, z ij = 0 otherwise.

  24. Galand-Spanjaard [Galand, Spanjaard, 2012] x : Defines solutions in the domain Q . � 1 if cost function i occupies position j in the ordering, z ij = 0 otherwise. y ij θ j Value of objective placed Value of objective i if in position j it occupies position j

  25. Galand-Spanjaard [Galand, Spanjaard, 2012] x : Defines solutions in the domain Q . � 1 if cost function i occupies position j in the ordering, z ij = 0 otherwise. y ij θ j Value of objective placed Value of objective i if in position j it occupies position j � θ j = y ij i ∈ P

  26. Galand-Spanjaard [Galand, Spanjaard, 2012] x : Defines solutions in the domain Q . � 1 if cost function i occupies position j in the ordering, z ij = 0 otherwise. y ij θ j Value of objective placed Value of objective i if in position j it occupies position j � θ j = y ij i ∈ P y ij = z ij C i x

  27. Galand-Spanjaard [Galand, Spanjaard, 2012] F GS : � � V = min ω j y ij j ∈ P i ∈ P � z ij = 1 j ∈ P s . t . i ∈ P � z ij = 1 i ∈ P j ∈ P � � y ij ≥ y ij +1 j ∈ P : j < p i ∈ P i ∈ P y ij ≤ Mz ij i , j ∈ P � y ij = C i x i ∈ P j ∈ P x ∈ Q y ij ≥ 0 i , j ∈ P z ∈ { 0 , 1 } p × p

  28. Comparison of Formulations Ω GS LP ⊂ Ω θ LP but ...

  29. Comparison of Formulations Ω GS LP ⊂ Ω θ LP but ... ... but F θ has O ( p ) variables θ whereas F GS has O ( p 2 ) variables y

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend