explaining success in sports competitions paired
play

Explaining Success in Sports Competitions: Paired Comparison Methods - PowerPoint PPT Presentation

Explaining Success in Sports Competitions: Paired Comparison Methods with Explanatory Variables Gerhard Tutz und Gunther Schauberger Ludwig-Maximilians-Universitt Mnchen Padova June 2017 Collaboration with Andreas Groll Simple Paired


  1. Explaining Success in Sports Competitions: Paired Comparison Methods with Explanatory Variables Gerhard Tutz und Gunther Schauberger Ludwig-Maximilians-Universität München Padova June 2017 Collaboration with Andreas Groll

  2. Simple Paired Comparison Models Inclusion of Covariates Estimation Applications The R -package BTLLasso References Paired Comparison Data • Sports competitions, experiments, . . . • Aim: measure unobservable latent trait for set of objects t a 1 , . . . , a m ✉ • Comparison/Competition between two objects a r and a s • Binary response ★ 1 if a r preferred over a s Y ♣ r,s q ✏ 0 if a s preferred over a r • Ordinal response ✩ 1 if a r strongly preferred over a s ✬ ✬ . . ✫ Y ♣ r,s q ✏ . . . . ✬ ✬ if a s strongly preferred over a r ✪ K 2/33

  3. Simple Paired Comparison Models Inclusion of Covariates Estimation Applications The R -package BTLLasso References Bradley-Terry Model Set of objects t a 1 , . . . , a m ✉ ★ 1 if a r preferred over a s for Y ♣ r,s q ✏ 0 if a s preferred over a r m exp ♣ γ r ✁ γ s q ➳ P ♣ Y ♣ r,s q ✏ 1 q ✏ 1 � exp ♣ γ r ✁ γ s q , γ r ✏ 0 r ✏ 1 γ r attractivity/strength of object r γ s attractivity/strength of object s 3/33

  4. Simple Paired Comparison Models Inclusion of Covariates Estimation Applications The R -package BTLLasso References From binary to ordinal response A match between teams a r and a s is treated as a paired comparison with ordinal response Y ♣ r,s q , with ✩ 1 if team a r wins by at least 2 goals difference ✬ ✬ 2 if team a r wins by 1 goal difference ✬ ✬ ✬ ✫ Y ♣ r,s q ✏ 3 if the match ends with a draw ✬ 4 if team a s wins by 1 goal difference ✬ ✬ ✬ ✬ ✪ 5 if team a s wins by at least 2 goals difference . exp ♣ θ k � γ r ✁ γ s q P ♣ Y ♣ r,s q ↕ k q ✏ 1 � exp ♣ θ k � γ r ✁ γ s q , k ✏ 1 , . . . , 5 • θ k : category-specific threshold parameters, θ 1 ✏ ✁ θ 4 , θ 2 ✏ ✁ θ 3 18 • γ r , γ s : team-specific abilities, ➦ γ r ✏ 0 r ✏ 1 4/33

  5. Simple Paired Comparison Models Inclusion of Covariates Estimation Applications The R -package BTLLasso References Assumptions and Derivation • Unobservable random utility U r that represents ability of team a r : U r ✏ γ r � ε r , • γ r is a fixed value (the fixed ability) • ε r is a random variable (represents noise) • Assume that ε 1 , . . . , ε m are iid random variables with distribution function F ε . • Given the pair ♣ a r , a s q , one observes Y ♣ r,s q ✏ k ô θ k ✁ 1 ➔ U s ✁ U r ➔ θ k , • Low categories k indicate dominance of a r • High categories k indicate dominance of a s ñ Y ♣ r,s q is a categorized/coarsened version of the differences in latent abilities. 5/33

  6. ♣☎q ♣ � ✁ q ♣ q ↕ ⑤♣ qq ✏ ♣ � ♣ � ✁ q Simple Paired Comparison Models Inclusion of Covariates Estimation Applications The R -package BTLLasso References Ordinal Bradley-Terry Model From Y ♣ r,s q ✏ k ô θ k ✁ 1 ➔ U s ✁ U r ➔ θ k we derive Y ♣ r,s q ↕ k ô U s ✁ U r ➔ θ k Y ♣ r,s q ↕ k ô ε s ✁ ε r ➔ θ k � γ r ✁ γ s and P ♣ Y ♣ r,s q ↕ k ⑤♣ r, s qq ✏ F ♣ η rsk q , η rsk ✏ θ k � γ r ✁ γ s where F ♣☎q is the distribution of the differences ε s ✁ ε r . 6/33

  7. Simple Paired Comparison Models Inclusion of Covariates Estimation Applications The R -package BTLLasso References Ordinal Bradley-Terry Model From Y ♣ r,s q ✏ k ô θ k ✁ 1 ➔ U s ✁ U r ➔ θ k we derive Y ♣ r,s q ↕ k ô U s ✁ U r ➔ θ k Y ♣ r,s q ↕ k ô ε s ✁ ε r ➔ θ k � γ r ✁ γ s and P ♣ Y ♣ r,s q ↕ k ⑤♣ r, s qq ✏ F ♣ η rsk q , η rsk ✏ θ k � γ r ✁ γ s where F ♣☎q is the distribution of the differences ε s ✁ ε r . With F ♣☎q as the logistic distribution function we get exp ♣ θ k � γ r ✁ γ s q P ♣ Y ♣ r,s q ↕ k ⑤♣ r, s qq ✏ 1 � exp ♣ θ k � γ r ✁ γ s q 6/33

  8. Simple Paired Comparison Models Inclusion of Covariates Estimation Applications The R -package BTLLasso References Ordinal Bradley-Terry Model From Y ♣ r,s q ✏ k ô θ k ✁ 1 ➔ U s ✁ U r ➔ θ k we derive θ 1 θ 2 θ 3 = −θ 2 θ 4 = −θ 1 Y ♣ r,s q ↕ k ô U s ✁ U r ➔ θ k Y ♣ r,s q ↕ k ô ε s ✁ ε r ➔ θ k � γ r ✁ γ s P ( Y rs = 2 ) 0.20 and f ( U s − U r ) P ♣ Y ♣ r,s q ↕ k ⑤♣ r, s qq ✏ F ♣ η rsk q , η rsk ✏ θ k � γ r ✁ γ s 0.10 where F ♣☎q is the distribution of the differences ε s ✁ ε r . 0.00 With F ♣☎q as the logistic distribution function we get γ s − γ r ← a r a s → 0 U s − U r exp ♣ θ k � γ r ✁ γ s q P ♣ Y ♣ r,s q ↕ k ⑤♣ r, s qq ✏ 1 � exp ♣ θ k � γ r ✁ γ s q 6/33

  9. Simple Paired Comparison Models Inclusion of Covariates Estimation Applications The R -package BTLLasso References Ordinal Bradley-Terry Model From Y ♣ r,s q ✏ k ô θ k ✁ 1 ➔ U s ✁ U r ➔ θ k we derive θ 1 θ 2 θ 3 = −θ 2 θ 4 = −θ 1 Y ♣ r,s q ↕ k ô U s ✁ U r ➔ θ k Y ♣ r,s q ↕ k ô ε s ✁ ε r ➔ θ k � γ r ✁ γ s P ( Y rs = 2 ) 0.20 and f ( U s − U r ) P ♣ Y ♣ r,s q ↕ k ⑤♣ r, s qq ✏ F ♣ η rsk q , η rsk ✏ θ k � γ r ✁ γ s 0.10 where F ♣☎q is the distribution of the differences ε s ✁ ε r . 0.00 With F ♣☎q as the logistic distribution function we get γ s − γ r ← a r a s → 0 U s − U r exp ♣ θ k � γ r ✁ γ s q P ♣ Y ♣ r,s q ↕ k ⑤♣ r, s qq ✏ 1 � exp ♣ θ k � γ r ✁ γ s q 6/33

  10. Simple Paired Comparison Models Inclusion of Covariates Estimation Applications The R -package BTLLasso References Restrictions Symmetric restrictions of threshold parameters: • θ k ✏ ✁ θ K ✁ k , k ✏ 1 , . . . , r K ④ 2 s e.g. K ✏ 5 ñ θ 1 ✏ ✁ θ 4 , θ 2 ✏ ✁ θ 3 • (if K is even): θ K ④ 2 ✏ 0 That means, that for teams a r and a s one obtains P ♣ Y ♣ r,s q ✏ k q ✏ P ♣ Y ♣ s,r q ✏ K � 1 ✁ k q . For the special case K ✏ 5 one obtains P ♣ Y ♣ r,s q ✏ 1 q ✏ P ♣ Y ♣ s,r q ✏ 5 q and P ♣ Y ♣ r,s q ✏ 2 q ✏ P ♣ Y ♣ s,r q ✏ 4 q 7/33

  11. ✏ � � ✁ ✏ ✏ ✁ ✏ ✁ ✏ ✁ ✏ ✁ ✏ � � ✁ → ✏ → Simple Paired Comparison Models Inclusion of Covariates Estimation Applications The R -package BTLLasso References Ordinal Model With Home/Order Effect Possible order effects in sports: • playing at home (football) • serving (tennis) • playing with the white pieces (chess) Simplest case: binary response given pair ♣ a r , a s q a r wins if U r → U s , With home/order effect a r wins if U r � δ → U s , ñ A constant δ is added to the first team (home team). 8/33

  12. ✏ � � ✁ ✏ ✏ ✁ ✏ ✁ ✏ ✁ ✏ ✁ Simple Paired Comparison Models Inclusion of Covariates Estimation Applications The R -package BTLLasso References Ordinal Model With Home/Order Effect Possible order effects in sports: • playing at home (football) • serving (tennis) • playing with the white pieces (chess) In the general case Simplest case: binary response given pair ♣ a r , a s q η rsk ✏ δ � θ k � γ r ✁ γ s , a r wins if U r → U s , where δ → 0 represents the order/home effect. • If δ ✏ 0 no order/home effect • If δ → 0 large the probability for low categories (dominance of a r ) is increased With home/order effect a r wins if U r � δ → U s , ñ A constant δ is added to the first team (home team). 8/33

  13. ✏ � � ✁ → ✏ → Simple Paired Comparison Models Inclusion of Covariates Estimation Applications The R -package BTLLasso References Ordinal Model With Home/Order Effect Possible order effects in sports: η rsk ✏ δ � θ k � γ r ✁ γ s • playing at home (football) Season 2015/16 Rank Team γ r ˆ Rank( ˆ γ r ) • serving (tennis) ˆ δ ✏ 0 . 265 1 BAY 1.899 1 • playing with the white pieces (chess) θ 1 ✏ ✁ ˆ ˆ 2 DOR 1.598 2 θ 4 ✏ ✁ 1 . 591 3 LEV 0.433 4 θ 2 ✏ ✁ ˆ ˆ θ 3 ✏ ✁ 0 . 576 4 MGB 0.475 3 Simplest case: binary response given pair ♣ a r , a s q 5 S04 0.133 5 6 MAI 0.088 6 7 BER -0.001 7 a r wins if U r → U s , 8 WOB -0.142 9 9 KOE -0.045 8 10 HSV -0.183 10 11 ING -0.228 11 12 AUG -0.363 13 With home/order effect 13 BRE -0.361 12 14 DAR -0.467 15 a r wins if U r � δ → U s , 15 HOF -0.448 14 ñ A constant δ is added to the first team (home team). 16 FRA -0.623 16 17 STU -0.699 17 18 HAN -1.068 18 8/33

  14. Simple Paired Comparison Models Inclusion of Covariates Estimation Applications The R -package BTLLasso References Explanatory Variables - Effect of Budget A simple two-step approach: • Fit a Bradley-Terry Model • Investigate the dependence of abilities on explanatory variables LM : R 2 adj = 0.49 3 x AM : R 2 adj = 0.58 2 abilities x x 1 x x x x x x x x x 0 x x x x x −1 x 20 40 60 80 100 120 budget Figure: Budgets (in millions) versus estimated abilities for all teams from the Bundesliga season 2012/2013; lines represent linear and additive model fit 9/33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend