dynamics of linear perturbations in modified gravity
play

Dynamics of Linear Perturbations in Modified Gravity COSMO 2007 - PowerPoint PPT Presentation

Dynamics of Linear Perturbations in Modified Gravity COSMO 2007 University of Sussex, Brighton, August 07 Alessandra Silvestri collaborators: M.T rodden, L.Pogosian, R.Bean, S.M.Carroll, I.Sawicki and D.Bernat references :


  1. Dynamics of Linear Perturbations in Modified Gravity COSMO 2007 University of Sussex, Brighton, August ‘07 Alessandra Silvestri collaborators: M.T rodden, L.Pogosian, R.Bean, S.M.Carroll, I.Sawicki and D.Bernat references : astro-ph/0611321, PRD’07 astro-ph/0607458, NJP’06, astro-ph/07.08..... Syracuse University

  2. f(R) Gravity S = M 2 � � dx 4 √− g [ R + f ( R )] + d 4 x √− g L m [ χ i , g µ ν ] P 2 (1 + f R ) R µ ν − 1 2 g µ ν ( R + f ) + ( g µ ν � − ∇ µ ∇ ν ) f R = T µ ν { M 2 P ∇ µ T µ ν = 0

  3. f(R) Gravity S = M 2 � � dx 4 √− g [ R + f ( R )] + d 4 x √− g L m [ χ i , g µ ν ] P 2 (1 + f R ) R µ ν − 1 2 g µ ν ( R + f ) + ( g µ ν � − ∇ µ ∇ ν ) f R = T µ ν { M 2 P ∇ µ T µ ν = 0 The Einstein equations are fourth order.

  4. f(R) Gravity S = M 2 � � dx 4 √− g [ R + f ( R )] + d 4 x √− g L m [ χ i , g µ ν ] P 2 (1 + f R ) R µ ν − 1 2 g µ ν ( R + f ) + ( g µ ν � − ∇ µ ∇ ν ) f R = T µ ν { M 2 P ∇ µ T µ ν = 0 The Einstein equations are fourth order. The trace-equation becomes: T (1 − f R ) R + 2 f − 3 � f R = M 2 P

  5. f(R) Gravity S = M 2 � � dx 4 √− g [ R + f ( R )] + d 4 x √− g L m [ χ i , g µ ν ] P 2 (1 + f R ) R µ ν − 1 2 g µ ν ( R + f ) + ( g µ ν � − ∇ µ ∇ ν ) f R = T µ ν { M 2 P ∇ µ T µ ν = 0 The Einstein equations are fourth order. The trace-equation becomes: T NOT algebraic ! (1 − f R ) R + 2 f − 3 � f R = M 2 P

  6. Background Viability 1. to have a stable high-curvature regime, to have a f RR > 0 non-tachyonic scalar field 2. to prevent the graviton from turning into ghost 1 + f R > 0 3. negative, monotonically increasing function of R that f R < 0 asymptotes to zero from below 4. | f 0 R | ≤ 10 − 6 must be small at recent epochs to pass LGC (Hu and Sawicki astro-ph/0705.1158) w eff ≃ − 1 (Dolgov & Kawasaki, Phys.Lett.B 573 (2003), Navarro et al. gr-qc/0611127, Sawicki and Hu astro-ph/0702278 Starobinsky astro-ph/0706.2041, Chiba, Smith, Erickcek astro-ph/0611867 Amendola et al. astro-ph/0603703-0612180, Amendola & T sujikawa astro-ph/0705.0396)

  7. Dynamics of Linear Perturbations in f(R) Gravity Scalar perturbations in Conformal Newtonian gauge T 0 0 = − ρ (1 + δ ) { ds 2 = − a 2 ( τ ) (1 + 2 Ψ ) d τ 2 + a 2 ( τ ) (1 − 2 Φ ) d � x 2 T 0 j = ( ρ + P ) v j T i j = ( P + δ P ) δ i j + π i j

  8. Dynamics of Linear Perturbations in f(R) Gravity Scalar perturbations in Conformal Newtonian gauge T 0 0 = − ρ (1 + δ ) { ds 2 = − a 2 ( τ ) (1 + 2 Ψ ) d τ 2 + a 2 ( τ ) (1 − 2 Φ ) d � x 2 T 0 j = ( ρ + P ) v j T i j = ( P + δ P ) δ i j + π i j Anisotropy eq. ( Ψ − Φ ) = − f RR δ R 1 + f R

  9. Dynamics of Linear Perturbations in f(R) Gravity Scalar perturbations in Conformal Newtonian gauge T 0 0 = − ρ (1 + δ ) { ds 2 = − a 2 ( τ ) (1 + 2 Ψ ) d τ 2 + a 2 ( τ ) (1 − 2 Φ ) d � x 2 T 0 j = ( ρ + P ) v j T i j = ( P + δ P ) δ i j + π i j Anisotropy eq. ( Ψ − Φ ) = − f RR δ R 1 + f R Φ + ≡ Φ + Ψ New variables: { 2 χ ≡ f RR δ R

  10. Dynamics of Linear Perturbations in f(R) Gravity Scalar perturbations in Conformal Newtonian gauge T 0 0 = − ρ (1 + δ ) { ds 2 = − a 2 ( τ ) (1 + 2 Ψ ) d τ 2 + a 2 ( τ ) (1 − 2 Φ ) d � x 2 T 0 j = ( ρ + P ) v j T i j = ( P + δ P ) δ i j + π i j Anisotropy eq. ( Ψ − Φ ) = − f RR δ R 1 + f R Φ + ≡ Φ + Ψ New variables: { 2 χ ≡ f RR δ R ( F ≡ 1 + f R ) � � F ′ F ′ + = 3 a Ω v 1 + 1 Φ + + 3 χ Φ ′ { HkF − 2 2 F 4 F F � � � k 2 � χ ′ = − 2 Ω∆ 1 + F ′ F − 2 H ′ F F 1 + 2 F χ − 2 F Φ ′ Φ + F ′ + + − 2 F H 2 a 2 H 2 H F ′ 3 F ′

  11. Sub-Horizon CDM equation: � � k 2 1 + H ′ Φ + − χ � � δ ′′ + δ ′ + = 0 a 2 H 2 H 2 F

  12. Sub-Horizon CDM equation: � � k 2 1 + H ′ Φ + − χ � � δ ′′ + δ ′ + = 0 a 2 H 2 H 2 F Einstein equations: Φ + ≃ 3 Ω H 2 a 2 δ k 2 F 2 k 2 Ω δ a 2 χ ≃ k 2 + 3 a 2 H 2 F ′ /F k 2

  13. Sub-Horizon CDM equation: � � k 2 1 + H ′ Φ + − χ � � δ ′′ + δ ′ + = 0 a 2 H 2 H 2 F Einstein equations: Φ + ≃ 3 Ω H 2 a 2 δ k 2 F 2 k 2 Ω δ a 2 χ ≃ k 2 + 3 a 2 H 2 F ′ /F k 2 1 + 4 k 2 f RR − 3 1 Ω δ a 2 F 1 + 3 k 2 f RR F 2 a 2 F { time and scale dependent ≡ G eff rescaling of Newton constant

  14. Sub-Horizon CDM equation: � � k 2 1 + H ′ Φ + − χ � � δ ′′ + δ ′ + = 0 a 2 H 2 H 2 F Einstein equations: k 2 f RR Φ + ≃ 3 Ω H 2 a 2 δ a 2 F k 2 F 2 k 2 Ω δ a 2 There is a scale associated χ ≃ k 2 + 3 a 2 H 2 F ′ /F k 2 with the extra d.o.f. : � f RR 1 λ C ≡ = F m f R 1 + 4 k 2 f RR − 3 1 Ω δ a 2 F 1 + 3 k 2 f RR F 2 a 2 F { time and scale dependent ≡ G eff rescaling of Newton constant

  15. Sub-Horizon Below this scale there is a significant departure from std GR and a scale dependence in the behavior of perturbations λ ≫ λ C χ ≃ 0 , G eff ≃ G F Ψ ≃ Φ λ ≪ λ C G χ ≃ − 2 3 F Φ + , G eff ≃ 4 F 3 Ψ ≃ 2 Φ

  16. w eff = − 1 d Φ + f 0 R = − 10 − 4 dz

  17. w eff = − 1 · ∆ ( k, z ) − d Φ + f 0 R = − 10 − 4 ∆ ( k, z i ) dz

  18. Dynamics of Linear Perturbations in Modified Source Gravity � M 2 dx 4 √− g � � 2 e 2 ψ R + 3 e 2 ψ ( ∇ ψ ) 2 − U ( ψ ) P S = + s m [ g, χ i ] Carroll, Sawicki, Silvestri, T rodden astro-ph/0607458, NJP’06 e 2 ψ G µ ν = κ 2 � � T µ ν + T ( ψ ) µ ν G µ ν = ˜ ψ = ψ ( T ) = ψ ( ρ m ) T µ ν ( ρ )

  19. Dynamics of Linear Perturbations in Modified Source Gravity � M 2 dx 4 √− g � � 2 e 2 ψ R + 3 e 2 ψ ( ∇ ψ ) 2 − U ( ψ ) P S = + s m [ g, χ i ] Carroll, Sawicki, Silvestri, T rodden astro-ph/0607458, NJP’06 e 2 ψ G µ ν = κ 2 � � T µ ν + T ( ψ ) µ ν G µ ν = ˜ ψ = ψ ( T ) = ψ ( ρ m ) T µ ν ( ρ ) Linear perturbations d ψ Φ − Ψ = − 2 dlna δ 3 � 3 Ω e − 2 ψ k 2 � � � k 2 d ψ d ψ 1 + 2 − 2 δ a 2 Ψ = − a 2 2 3 dlna 3 dlna

  20. 6 MSG, k = 0.003 Mpc − 1 MSG, k = 0.001 Mpc − 1 5 MSG, k = 0.0003 Mpc − 1 LCDM scale-dependent runaway growth 4 d ln a d∆ 3 rapid structure formation drives the growth of 2 gravitational potentials 1 0 5 4 3 2 1 0 z the ISW effect is enhanced at the lowest 7 multipoles MSG, k = 0.003 Mpc − 1 MSG, k = 0.001 Mpc − 1 6 MSG, k = 0.0003 Mpc − 1 LCDM 5 negative LSS-ISW correlation 4 Φ − Ψ 3 2 1 0 3 2.5 2 1.5 1 0.5 0 z

  21. CONCLUSIONS For f(R) and MSG models that reproduce the desired background evolution, we investigated the dynamics of linear perturbations, finding: transition scale related to new d.o.f. mass scale and effective shear slip between metric potentials Ψ Φ modified ISW signal modified, scale-dependent evolution of the metric potentials modified, scale-dependent evolution of matter perturbations The ISW, its correlation with LSS and Weak Lensing might be very useful probes of modifications of gravity

  22. THANK YOU!

  23. w eff = − 1 w eff = − 0 . 99 w eff = − 1 . 01 w eff = − 0 . 99 → − 1 . 01

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend