dynamic graph coloring
play

Dynamic Graph Coloring Luis Barba 1 Jean Cardinal 2 Matias Korman 3 - PowerPoint PPT Presentation

Dynamic Graph Coloring Luis Barba 1 Jean Cardinal 2 Matias Korman 3 Stefan Langerman 2 Andr van Renssen 4 , 5 Marcel Roeloffzen 4 , 5 Sander Verdonschot 6 1 ETH Zrich 2 Universit Libre de Bruxelles 3 Tohoku University 4 National Institute of


  1. Dynamic Graph Coloring Luis Barba 1 Jean Cardinal 2 Matias Korman 3 Stefan Langerman 2 André van Renssen 4 , 5 Marcel Roeloffzen 4 , 5 Sander Verdonschot 6 1 ETH Zürich 2 Université Libre de Bruxelles 3 Tohoku University 4 National Institute of Informatics 5 JST, ERATO, Kawarabayashi Large Graph Project 6 Carleton University July 31, 2017 Sander Verdonschot Dynamic Graph Coloring

  2. Problem • Maintain a proper coloring of a changing graph Sander Verdonschot Dynamic Graph Coloring

  3. Problem • Maintain a proper coloring of a changing graph Sander Verdonschot Dynamic Graph Coloring

  4. Problem • Maintain a proper coloring of a changing graph Sander Verdonschot Dynamic Graph Coloring

  5. Problem • Maintain a proper coloring of a changing graph Sander Verdonschot Dynamic Graph Coloring

  6. Problem • Maintain a proper coloring of a changing graph Sander Verdonschot Dynamic Graph Coloring

  7. Problem • Maintain a proper coloring of a changing graph Sander Verdonschot Dynamic Graph Coloring

  8. Problem • Maintain a proper coloring of a changing graph Sander Verdonschot Dynamic Graph Coloring

  9. Problem • Maintain a proper coloring of a changing graph: • Add & remove edges • Add & remove vertices with incident edges Sander Verdonschot Dynamic Graph Coloring

  10. Limit the number of vertex color changes • Easy! Use a new color for every change Limit the number of colors Problem • Easy! Recompute the coloring for every change Sander Verdonschot Dynamic Graph Coloring

  11. • Easy! Use a new color for every change Limit the number of colors Problem • Easy! Recompute the coloring for every change ⇒ Limit the number of vertex color changes Sander Verdonschot Dynamic Graph Coloring

  12. Limit the number of colors Problem • Easy! Recompute the coloring for every change ⇒ Limit the number of vertex color changes • Easy! Use a new color for every change Sander Verdonschot Dynamic Graph Coloring

  13. Problem • Easy! Recompute the coloring for every change ⇒ Limit the number of vertex color changes • Easy! Use a new color for every change ⇒ Limit the number of colors Sander Verdonschot Dynamic Graph Coloring

  14. 2 n • No vertex recolorings n colors for n -colorable graph [Halldórsson & Szegedy, 1992] Our results • O d -approximate coloring with O dn 1 d recolorings • O dn 1 d -approximate coloring with O d recolorings 2 • Maintaining a c -coloring requires n recolorings c c 1 Problem • Trade off the number of colors vs vertex color changes • Optimal coloring ⇒ Ω ( n ) vertex recolorings per update Sander Verdonschot Dynamic Graph Coloring

  15. Our results • O d -approximate coloring with O dn 1 d recolorings • O dn 1 d -approximate coloring with O d recolorings 2 • Maintaining a c -coloring requires n recolorings c c 1 Problem • Trade off the number of colors vs vertex color changes • Optimal coloring ⇒ Ω ( n ) vertex recolorings per update 2 n • No vertex recolorings ⇒ log n colors for log n -colorable graph [Halldórsson & Szegedy, 1992] Sander Verdonschot Dynamic Graph Coloring

  16. 2 • Maintaining a c -coloring requires n recolorings c c 1 Problem • Trade off the number of colors vs vertex color changes • Optimal coloring ⇒ Ω ( n ) vertex recolorings per update 2 n • No vertex recolorings ⇒ log n colors for log n -colorable graph [Halldórsson & Szegedy, 1992] Our results • O ( d ) -approximate coloring with O ( dn ( 1 / d ) ) recolorings • O ( dn ( 1 / d ) ) -approximate coloring with O ( d ) recolorings Sander Verdonschot Dynamic Graph Coloring

  17. Problem • Trade off the number of colors vs vertex color changes • Optimal coloring ⇒ Ω ( n ) vertex recolorings per update 2 n • No vertex recolorings ⇒ log n colors for log n -colorable graph [Halldórsson & Szegedy, 1992] Our results • O ( d ) -approximate coloring with O ( dn ( 1 / d ) ) recolorings • O ( dn ( 1 / d ) ) -approximate coloring with O ( d ) recolorings 2 • Maintaining a c -coloring requires Ω ( n c ( c − 1 ) ) recolorings Sander Verdonschot Dynamic Graph Coloring

  18. Upper bound: big-buckets • Vertices are placed in buckets Sander Verdonschot Dynamic Graph Coloring

  19. Upper bound: big-buckets • Each bucket has a fixed size and its own set of colors . . . n 1 /d n 2 /d n ∞ Sander Verdonschot Dynamic Graph Coloring

  20. Upper bound: big-buckets • Initially, all vertices are in the reset bucket Sander Verdonschot Dynamic Graph Coloring

  21. Upper bound: big-buckets • Changed vertices are placed in the first bucket Sander Verdonschot Dynamic Graph Coloring

  22. Upper bound: big-buckets • Changed vertices are placed in the first bucket Sander Verdonschot Dynamic Graph Coloring

  23. Upper bound: big-buckets • Changed vertices are placed in the first bucket Sander Verdonschot Dynamic Graph Coloring

  24. Upper bound: big-buckets • Changed vertices are placed in the first bucket Sander Verdonschot Dynamic Graph Coloring

  25. Upper bound: big-buckets • When a bucket fills up, it is emptied in the next one Sander Verdonschot Dynamic Graph Coloring

  26. Upper bound: big-buckets • When a bucket fills up, it is emptied in the next one Sander Verdonschot Dynamic Graph Coloring

  27. Upper bound: big-buckets • New vertices also go to the first bucket Sander Verdonschot Dynamic Graph Coloring

  28. Upper bound: big-buckets • New vertices also go to the first bucket Sander Verdonschot Dynamic Graph Coloring

  29. Upper bound: big-buckets • New vertices also go to the first bucket Sander Verdonschot Dynamic Graph Coloring

  30. Upper bound: big-buckets • New vertices also go to the first bucket Sander Verdonschot Dynamic Graph Coloring

  31. Upper bound: big-buckets • New vertices also go to the first bucket Sander Verdonschot Dynamic Graph Coloring

  32. Upper bound: big-buckets • New vertices also go to the first bucket Sander Verdonschot Dynamic Graph Coloring

  33. Upper bound: big-buckets • New vertices also go to the first bucket ( d + 1 ) -approximate coloring with O ( dn 1 / d ) recolorings per update n 2 n n ( d − 1 ) /d n n 2 /d . . . n 1 /d n 1 /d Sander Verdonschot Dynamic Graph Coloring

  34. Upper bound: small-buckets • Split each big bucket into n 1 / d smaller ones • O ( dn 1 / d ) -approximate coloring with d + 2 recolorings per update n 1 /d n 1 /d n 1 /d 1 1 1 . . . n 1 /d n 1 /d Sander Verdonschot Dynamic Graph Coloring

  35. • Maintaining a 2-coloring of a forest requires n recolorings per update Lower bound • Warm-up: 2-coloring a forest Sander Verdonschot Dynamic Graph Coloring

  36. • Maintaining a 2-coloring of a forest requires n recolorings per update Lower bound • Build 3 stars of size n / 3 Sander Verdonschot Dynamic Graph Coloring

  37. • Maintaining a 2-coloring of a forest requires n recolorings per update Lower bound • Connect 2 with the same color root Sander Verdonschot Dynamic Graph Coloring

  38. • Maintaining a 2-coloring of a forest requires n recolorings per update Lower bound • Connect 2 with the same color root Sander Verdonschot Dynamic Graph Coloring

  39. • Maintaining a 2-coloring of a forest requires n recolorings per update Lower bound • Connect 2 with the same color root . Repeat Sander Verdonschot Dynamic Graph Coloring

  40. • Maintaining a 2-coloring of a forest requires n recolorings per update Lower bound • Connect 2 with the same color root . Repeat Sander Verdonschot Dynamic Graph Coloring

  41. Lower bound • Connect 2 with the same color root . Repeat • Maintaining a 2-coloring of a forest requires Ω ( n ) recolorings per update Sander Verdonschot Dynamic Graph Coloring

  42. Lower bound • 3-coloring a forest Sander Verdonschot Dynamic Graph Coloring

  43. Lower bound • Build n 1 / 3 stars of size n 2 / 3 n 1 / 3 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

  44. Lower bound • Assign most common leaf colour to trees n 1 / 3 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

  45. Lower bound • Keep at least n 1 / 3 / 3 with the same color n 1 / 3 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

  46. Lower bound • Keep at least n 1 / 3 / 3 with the same color n 1 / 3 / 3 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

  47. Lower bound • Group into 3 big trees, each with n 1 / 3 / 9 small trees n 1 / 3 / 3 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

  48. Lower bound • Group into 3 big trees, each with n 1 / 3 / 9 small trees n 1 / 3 / 3 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

  49. Lower bound • If at any point, a small tree has no blue children, reset n 1 / 3 / 9 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

  50. Lower bound • If at any point, a small tree has no blue children, reset n 1 / 3 / 9 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

  51. Lower bound • Roots of small trees are orange or red n 1 / 3 / 9 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

  52. Lower bound • Connect two big trees with same root color n 1 / 3 / 9 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend