duality by example duality by example ii
play

Duality by Example Duality by Example: II max z = 4 x 1 + x 2 + 3 x - PowerPoint PPT Presentation

Duality by Example Duality by Example: II max z = 4 x 1 + x 2 + 3 x 3 max z = 4 x 1 + x 2 + 3 x 3 s.t. x 1 + 4 x 2 1 s.t. x 1 + 4 x 2 1 3 x 1 x 2 + x 3 3 3 x 1 x 2 + x 3 3 x 1 , x 2 , x 3 0 x 1 , x 2 , x 3 0 1.


  1. Duality by Example Duality by Example: II max z = 4 x 1 + x 2 + 3 x 3 max z = 4 x 1 + x 2 + 3 x 3 s.t. x 1 + 4 x 2 ≤ 1 s.t. x 1 + 4 x 2 ≤ 1 3 x 1 − x 2 + x 3 ≤ 3 3 x 1 − x 2 + x 3 ≤ 3 x 1 , x 2 , x 3 ≥ 0 x 1 , x 2 , x 3 ≥ 0 1. Add the first inequality (multiplied by 2) to the second 1. η : maximal possible value of target function. inequality (multiplied by 3): 2. Any feasible solution ⇒ a lower bound on η . 3. In above: x 1 = 1 , x 2 = x 3 = 0 is feasible, and implies z = 4 and thus η ≥ 4 . 2 ( x 1 + 4 x 2 ) ≤ 2 ( 1 ) 4. x 1 = x 2 = 0 , x 3 = 3 is feasible = ⇒ η ≥ z = 9 . + 3 ( 3 x 1 − x 2 + x 3 ) ≤ 3 ( 3 ) . 5. How close this solution is to opt? (i.e., η ) 6. If very close to optimal – might be good enough. Maybe 2. The resulting inequality is stop? 11 x 1 + 5 x 2 + 3 x 3 ≤ 11 . (1) Duality by Example: II Duality by Example: III z = 4 x 1 + x 2 + 3 x 3 z = 4 x 1 + x 2 + 3 x 3 max max s.t. x 1 + 4 x 2 ≤ 1 s.t. x 1 + 4 x 2 ≤ 1 3 x 1 − x 2 + x 3 ≤ 3 3 x 1 − x 2 + x 3 ≤ 3 x 1 , x 2 , x 3 ≥ 0 x 1 , x 2 , x 3 ≥ 0 1. got 11 x 1 + 5 x 2 + 3 x 3 ≤ 11 . 1. For any feasible solution: z = 4 x 1 + x 2 + 3 x 3 ≤ 11 x 1 + 5 x 2 + 3 x 3 ≤ 11 , 2. inequality must hold for any feasible solution of L . 2. Opt solution is LP L is somewhere between 9 and 11 . 3. Objective: z = 4 x 1 + x 2 + 3 x 3 and x 1 , x 2 and x 3 are all non-negative. 3. Multiply first inequality by y 1 , second inequality by y 2 and add them up: 4. Inequality above has larger coefficients than objective (for y 1 ( x 1 + ) ≤ y 1 ( 1 ) corresponding variables) 4 x 2 + y 2 ( 3 x 1 - + ) ≤ y 2 ( 3 ) x 2 x 3 5. For any feasible solution: ( y 1 + 3 y 2 ) x 1 + ( 4 y 1 − y 2 ) x 2 + y 1 + 3 y 2 . y 2 x 3 ≤ z = 4 x 1 + x 2 + 3 x 3 ≤ 11 x 1 + 5 x 2 + 3 x 3 ≤ 11 ,

  2. Duality by Example: IV Duality by Example: IV Dual LP : � L max z = 4 x 1 + x 2 + 3 x 3 Primal LP : min y 1 + 3 y 2 max z = 4 x 1 + x 2 + 3 x 3 s.t. x 1 + 4 x 2 ≤ 1 s.t. y 1 + 3 y 2 ≥ 4 s.t. x 1 + 4 x 2 ≤ 1 3 x 1 − x 2 + x 3 ≤ 3 4 y 1 − y 2 ≥ 1 3 x 1 − x 2 + x 3 ≤ 3 x 1 , x 2 , x 3 ≥ 0 y 2 ≥ 3 x 1 , x 2 , x 3 ≥ 0 1. ( y 1 + 3 y 2 ) x 1 + ( 4 y 1 − y 2 ) x 2 + y 2 x 3 ≤ y 1 + 3 y 2 . y 1 , y 2 ≥ 0 . 1. Compare to target function – require 1. Best upper bound on η (max value of z ) then solve the 4 y 1 + 3 y 2 ≤ expression bigger than LP � L . 1 ≤ 4 y 1 − y 2 target function in each 2. � L : Dual program to L . 3 ≤ y 2 , variable. 3. opt. solution of � = ⇒ z = 4 x 1 + x 2 + 3 x 3 ≤ L is an upper bound on optimal solution for L . ( y 1 + 3 y 2 ) x 1 + ( 4 y 1 − y 2 ) x 2 + y 2 x 3 ≤ y 1 + 3 y 2 . Primal program/Dual program Primal program/Dual program m n � � min b i y i max c j x j i = 1 j = 1 m � n � s.t. a ij y i ≥ c j , s.t. a ij x j ≤ b i , i = 1 j = 1 for i = 1 , . . . , m , for j = 1 , . . . , n , x j ≥ 0 , y i ≥ 0 , for j = 1 , . . . , n . for i = 1 , . . . , m . c T x y T b max min y T A ≥ c T . s. t. s. t. Ax ≤ b . x ≥ 0 . y ≥ 0 .

  3. Primal program/Dual program Primal program / Dual program in standard form What happens when you take the dual of the dual? n � m � m max c j x j n � � max ( − b i ) y i min b i y i max c j x j j = 1 i = 1 i = 1 j = 1 n � m � m � s.t. a ij x j ≤ b i , n � s.t. ( − a ij ) y i ≤ − c j , s.t. a ij y i ≥ c j , s.t. a ij x j ≤ b i , j = 1 i = 1 for i = 1 , . . . , m , i = 1 j = 1 for j = 1 , . . . , n , for i = 1 , . . . , m , for j = 1 , . . . , n , x j ≥ 0 , y i ≥ 0 , x j ≥ 0 , y i ≥ 0 , for j = 1 , . . . , n . for i = 1 , . . . , m . for j = 1 , . . . , n . for i = 1 , . . . , m . Dual program in standard form / Dual of dual Dual of dual program / Dual of dual program program written in standard form n n � � m n � � min − c j x j min − c j x j ( − b i ) y i max max c j x j j = 1 j = 1 i = 1 j = 1 n n � � m � n � s.t. ( − a ij ) x j ≥ − b i , s.t. ( − a ij ) x j ≥ − b i , s.t. ( − a ij ) y i ≤ − c j , s.t. a ij x j ≤ b i , j = 1 j = 1 i = 1 j = 1 for i = 1 , . . . , m , for i = 1 , . . . , m , for i = 1 , . . . , m , for j = 1 , . . . , n , x j ≥ 0 , x j ≥ 0 , x j ≥ 0 , y i ≥ 0 , for j = 1 , . . . , n . for j = 1 , . . . , n . for j = 1 , . . . , n . for i = 1 , . . . , m . = ⇒ Dual of the dual LP is the primal LP !

  4. Result Weak duality theorem Proved the following: Theorem Lemma If ( x 1 , x 2 , . . . , x n ) is feasible for the primal LP and Let L be an LP , and let L ′ be its dual. Let L ′′ be the dual to ( y 1 , y 2 , . . . , y m ) is feasible for the dual LP , then L ′ . Then L and L ′′ are the same LP . � � c j x j ≤ b i y i . j i Namely, all the feasible solutions of the dual bound all the feasible solutions of the primal. Weak duality theorem – proof The strong duality theorem Proof. Theorem (Strong duality theorem.) By substitution from the dual form, and since the two If the primal LP problem has an optimal solution � � solutions are feasible, we know that x ∗ = x ∗ 1 , . . . , x ∗ then the dual also has an optimal solution, n � �   y ∗ = � m � y ∗ 1 , . . . , y ∗ , such that � � � � � � m  y i ≤ c j x j ≤ y i a ij x j ≤ a ij x j b i y i . � � i = 1 j j i j i c j x ∗ b i y ∗ j = i . j i 1. y being dual feasible implies c T ≤ y T A 2. x being primal feasible implies Ax ≤ b 3. ⇒ c T x ≤ ( y T A ) x ≤ y T ( Ax ) ≤ y T b

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend