discrete serrin s problem
play

Discrete Serrins Problem A. Carmona, A.M. Encinas and C. Ara uz - PowerPoint PPT Presentation

Discrete Serrins Problem A. Carmona, A.M. Encinas and C. Ara uz Dept. Matem` atica Aplicada III Discrete Serrins Problem Introduction Motivation The original Serrins Problem R n , with smooth boundary () , if u is the unique


  1. Discrete Serrin’s Problem A. Carmona, A.M. Encinas and C. Ara´ uz Dept. Matem` atica Aplicada III

  2. Discrete Serrin’s Problem Introduction Motivation The original Serrin’s Problem R n , with smooth boundary δ (Ω) , if u is the unique Given Ω ⊂ I solution of − ∆( u ) = 1 on Ω u = 0 on δ (Ω) then ∂u ∂ n is constant iff Ω is a ball and u ( x ) = 1 2 n ( R 2 −| x | 2 ) ; that is, u is radial. CJI 2013 (RSME), Sevilla

  3. Discrete Serrin’s Problem Introduction Motivation The original Serrin’s Problem R n , with smooth boundary δ (Ω) , if u is the unique Given Ω ⊂ I solution of − ∆( u ) = 1 on Ω u = 0 on δ (Ω) then ∂u ∂ n is constant iff Ω is a ball and u ( x ) = 1 2 n ( R 2 −| x | 2 ) ; that is, u is radial. ◮ Moving planes ◮ Minimum principle and Green Identities CJI 2013 (RSME), Sevilla

  4. Discrete Serrin’s Problem Introduction Motivation Discrete Serrin’s Problem � � Given Γ = F ∪ δ ( F ) , c a network with boundary if u is the unique solution of L ( u ) = 1 on F u = 0 on δ ( F ) then if ∂u ∂ n is constant, what can we say about Γ and u ? CJI 2013 (RSME), Sevilla

  5. Discrete Serrin’s Problem Introduction Motivation Discrete Serrin’s Problem � � Given Γ = F ∪ δ ( F ) , c a network with boundary if u is the unique solution of L ( u ) = 1 on F u = 0 on δ ( F ) then if ∂u ∂ n is constant, what can we say about Γ and u ? ◮ Minimum principle and Green Identities CJI 2013 (RSME), Sevilla

  6. Discrete Serrin’s Problem Introduction Motivation Discrete Serrin’s Problem � � Given Γ = F ∪ δ ( F ) , c a network with boundary if u is the unique solution of L ( u ) = 1 on F u = 0 on δ ( F ) then if ∂u ∂ n is constant, what can we say about Γ and u ? ◮ Minimum principle and Green Identities ◮ Existence of equilibrium measure CJI 2013 (RSME), Sevilla

  7. Discrete Serrin’s Problem Introduction Notations Network Topology ◮ Network Γ = ( V, E, c ) CJI 2013 (RSME), Sevilla

  8. Discrete Serrin’s Problem Introduction Notations Network Topology ◮ Network Γ = ( V, E, c ) ◮ Given F ⊂ V consider the sets Ext ( F ) δ ( F ) D 1  D 2         ◦  D 3 F  r ( F )= max x ∈ F { d ( x, δ ( F ) }      D 4    CJI 2013 (RSME), Sevilla

  9. Discrete Serrin’s Problem Introduction Notations Operators ◮ Combinatorial Laplacian L : C ( V ) − → C ( V ) � � � � L ( u )( x )= c ( x, y ) u ( x ) − u ( y ) = k ( x ) u ( x ) − c ( x, y ) u ( y ) y ∈ V y ∈ V CJI 2013 (RSME), Sevilla

  10. Discrete Serrin’s Problem Introduction Notations Operators ◮ Combinatorial Laplacian L : C ( V ) − → C ( V ) � � � � L ( u )( x )= c ( x, y ) u ( x ) − u ( y ) = k ( x ) u ( x ) − c ( x, y ) u ( y ) y ∈ V y ∈ V ◮ Matrix version   k ( x 1 ) − c ( x 1 , x 2 ) · · · − c ( x 1 , x n )   − c ( x 1 , x 2 ) k ( x 2 ) · · · − c ( x 2 , x n )     = D − A . . .  ...  . . .  . . .    − c ( x 1 , x n ) − c ( x 2 , x n ) · · · k ( x n ) CJI 2013 (RSME), Sevilla

  11. Discrete Serrin’s Problem Introduction Notations Operators ◮ Combinatorial Laplacian L : C ( V ) − → C ( V ) � � � � L ( u )( x )= c ( x, y ) u ( x ) − u ( y ) = k ( x ) u ( x ) − c ( x, y ) u ( y ) y ∈ V y ∈ V ◮ Normal derivative: u ∈ C ( V ) and F connected proper set ∂u � � � ∂ n ( x ) = c ( x, y ) u ( x ) − u ( y ) , for any x ∈ δ ( F ) y ∈ F CJI 2013 (RSME), Sevilla

  12. Discrete Serrin’s Problem Introduction Notations Operators ◮ Combinatorial Laplacian L : C ( V ) − → C ( V ) � � � � L ( u )( x )= c ( x, y ) u ( x ) − u ( y ) = k ( x ) u ( x ) − c ( x, y ) u ( y ) y ∈ V y ∈ V ◮ Normal derivative: u ∈ C ( V ) and F connected proper set ∂u � � � ∂ n ( x ) = c ( x, y ) u ( x ) − u ( y ) , for any x ∈ δ ( F ) y ∈ F ∂u � � Gauss Theorem: L ( u )( x ) = − ∂ n ( x ) x ∈ F x ∈ δ ( F ) CJI 2013 (RSME), Sevilla

  13. Discrete Serrin’s Problem Introduction Basic Results Minimum principle ◮ A function u ∈ C ( V ) is called ⊲ Superharmonic if L ( u ) ≥ 0 CJI 2013 (RSME), Sevilla

  14. Discrete Serrin’s Problem Introduction Basic Results Minimum principle ◮ A function u ∈ C ( V ) is called ⊲ Superharmonic if L ( u ) ≥ 0 ⊲ Strictly Superharmonic if L ( u ) > 0 CJI 2013 (RSME), Sevilla

  15. Discrete Serrin’s Problem Introduction Basic Results Minimum principle ◮ A function u ∈ C ( V ) is called ⊲ Superharmonic if L ( u ) ≥ 0 ⊲ Strictly Superharmonic if L ( u ) > 0 If u ∈ C ( V ) is superharmonic on F , then x ∈ δ ( F ) { u ( x ) } ≤ min min x ∈ F { u ( x ) } ◮ The equality holds iff u = aχ ¯ F CJI 2013 (RSME), Sevilla

  16. Discrete Serrin’s Problem Superharmonic functions Minimum principles Generalized minimum principles If u ∈ C ( ¯ F ) is superharmonic on F , then for any i = 1 , . . . , r ( F ) − 1 ◮ x ∈ δ ( F ) { u ( x ) } ≤ min min x ∈ D i { u ( x ) } ≤ x ∈ D i +1 { u ( x ) } min CJI 2013 (RSME), Sevilla

  17. Discrete Serrin’s Problem Superharmonic functions Minimum principles Generalized minimum principles If u ∈ C ( ¯ F ) is superharmonic on F , then for any i = 1 , . . . , r ( F ) − 1 ◮ x ∈ δ ( F ) { u ( x ) } ≤ min min x ∈ D i { u ( x ) } ≤ x ∈ D i +1 { u ( x ) } min δ ( F ) 0 0 0 D 1 23 . 1 22 . 7 9 21 . 3 17  D 2 22 . 5        ◦   D 3 F 22 19 . 7       D 4   21 . 4  CJI 2013 (RSME), Sevilla

  18. Discrete Serrin’s Problem Superharmonic functions Minimum principles Generalized minimum principles If u ∈ C ( ¯ F ) is superharmonic on F , then for any i = 1 , . . . , r ( F ) − 1 ◮ x ∈ δ ( F ) { u ( x ) } ≤ min min x ∈ D i { u ( x ) } ≤ x ∈ D i +1 { u ( x ) } min If u ∈ C + ( F ) is a strictly superharmonic function on F , then for any x ∈ F there exists y ∈ ¯ F such that c ( x, y ) > 0 and ◮ u ( y ) < u ( x ) CJI 2013 (RSME), Sevilla

  19. Discrete Serrin’s Problem Superharmonic functions Minimum principles Generalized minimum principles If u ∈ C + ( F ) is a strictly superharmonic function on F , then for any x ∈ F there exists y ∈ ¯ F such that c ( x, y ) > 0 and ◮ u ( y ) < u ( x ) δ ( F ) 0 0 0 D 1 23 . 1 22 . 7 9 21 . 3  17 D 2 22 . 5        ◦   D 3 19 . 7 F 22      D 4    21 . 4  CJI 2013 (RSME), Sevilla

  20. Discrete Serrin’s Problem Superharmonic functions Minimum principles Level sets ◮ Given u ∈ C + ( F ) we denote 0 = u 0 < u 1 < · · · < u s ⊲ Level set U i = { x ∈ F : u ( x ) = u i } CJI 2013 (RSME), Sevilla

  21. Discrete Serrin’s Problem Superharmonic functions Minimum principles Level sets ◮ Given u ∈ C + ( F ) we denote 0 = u 0 < u 1 < · · · < u s ⊲ Level set U i = { x ∈ F : u ( x ) = u i } If u ∈ C + ( F ) is a strictly superharmonic function on F , then i ◮ � U 0 = D 0 and U i ⊂ D i , for any i = 1 , . . . , s j =1 CJI 2013 (RSME), Sevilla

  22. Discrete Serrin’s Problem Superharmonic functions Minimum principles Level sets ◮ Given u ∈ C + ( F ) we denote 0 = u 0 < u 1 < · · · < u s ⊲ Level set U i = { x ∈ F : u ( x ) = u i } If u ∈ C + ( F ) is a strictly superharmonic function on F , then i ◮ � U 0 = D 0 and U i ⊂ D i , for any i = 1 , . . . , s j =1 δ ( F ) 0 0 0 0 5 5 1 1 3 3 U 2 D 2 7 5 3 3 CJI 2013 (RSME), Sevilla 10 3

  23. Discrete Serrin’s Problem Superharmonic functions Minimum principles Level sets ◮ Given u ∈ C + ( F ) we denote 0 = u 0 < u 1 < · · · < u s ⊲ Level set U i = { x ∈ F : u ( x ) = u i } If u ∈ C + ( F ) is a strictly superharmonic function on F , then i ◮ � U 0 = D 0 and U i ⊂ D i , for any i = 1 , . . . , s j =1 If u ∈ C + ( F ) is a strictly superharmonic function on F ◮ satisfying U j = D j for all j = 0 , . . . , i, then U i +1 ⊂ D i +1 CJI 2013 (RSME), Sevilla

  24. Discrete Serrin’s Problem Superharmonic functions Minimum principles Radial Functions ◮ An strictly superharmonic function u ∈ C + ( F ) is called ◮ radial if U i = D i , for any i = 0 , . . . , s CJI 2013 (RSME), Sevilla

  25. Discrete Serrin’s Problem Superharmonic functions Minimum principles Radial Functions ◮ An strictly superharmonic function u ∈ C + ( F ) is called ◮ radial if U i = D i , for any i = 0 , . . . , s = ⇒ s = r ( F ) CJI 2013 (RSME), Sevilla

  26. Discrete Serrin’s Problem Superharmonic functions Minimum principles Radial Functions ◮ An strictly superharmonic function u ∈ C + ( F ) is called ◮ radial if U i = D i , for any i = 0 , . . . , s = ⇒ s = r ( F ) If u ∈ C + ( F ) is a radial function , then for any x ∈ D i ◮ � � � � L u ( x ) = k i +1 ( x ) u i − u i +1 + k i − 1 ( x ) u i − u i − 1 > 0 , CJI 2013 (RSME), Sevilla

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend