discrete models of disease and competition
play

Discrete models of disease and competition R. Bravo de la Parra , M. - PowerPoint PPT Presentation

Discrete models of disease and competition R. Bravo de la Parra , M. Marv , E. Snchez , L. Sanz Departamento de Fsica y Matemticas, UAH, Alcal de Henares, Spain Departamento Matemtica Aplicada, ETSI Industriales,


  1. Discrete models of disease and competition R. Bravo de la Parra ⋆ , M. Marvá ⋆ , E. Sánchez † , L. Sanz † ⋆ Departamento de Física y Matemáticas, UAH, Alcalá de Henares, Spain † Departamento Matemática Aplicada, ETSI Industriales, UPM, Madrid, Spain logo.png M. Marvá (U. de Alcalá) A discrete disease-competition model Osnabrück - April 2019 1 / 20

  2. The university of Alcalá Opened up in 1499. Moved to Madrid city in 1836 (UCM). Back to Alcalá in 1970. logo.png M. Marvá (U. de Alcalá) A discrete disease-competition model Osnabrück - April 2019 2 / 20

  3. Empirical evidences of diseases/parasites-population interactions Plasmodium azurophilum Anolis gingivinus Anolis Watts Bemisia tabaci Tribolium confusum Adelina tribolii Wolbachia Tribolium castaneum Global change. logo.png Diseases as populations control. M. Marvá (U. de Alcalá) A discrete disease-competition model Osnabrück - April 2019 3 / 20

  4. Organization levels and time scales Hierarchical organization levels Different levels, different time scales Subgroups with strong interactions ECOSYSTEM Heterogeneity may define subgrups: Epidemiological state Individual traits COMMUNITY Spatial distribution Social status POPULATION INDIVIDUALS Objectives: Building up models that capture previous behavior. 1 logo.png Models linking levels. 2 M. Marvá (U. de Alcalá) A discrete disease-competition model Osnabrück - April 2019 4 / 20

  5. Discrete two time scales model Process Time unit Epidemics Comunity logo.png M. Marvá (U. de Alcalá) A discrete disease-competition model Osnabrück - April 2019 5 / 20

  6. Discrete two time scales model Process Time unit Epidemics Comunity t t + 1 Notation S : competition, demography F : epidemics Two time scales model or slow-fast system k times F ◦ F ◦ · · · ◦ F ( N t ) = S ◦ F ( k ) ( N t ) � �� � N t +1 = S ◦ logo.png M. Marvá (U. de Alcalá) A discrete disease-competition model Osnabrück - April 2019 6 / 20

  7. Dimension reduction process Given the prototype X t + 1 = S ◦ F ( k ) ( X t ) (1) (H1) ∀ X ∈ Ω N there exists ¯ F ( X ) := lim k →∞ F ( k ) ( X ) X t + 1 := S ◦ ¯ F ( X t ) auxiliary system (2) G E → Ω N such that ¯ (H2) If there exist Ω q ⊂ R q , where q < N and Ω N − → Ω q − F = E ◦ G Y t + 1 = G ◦ S ◦ E ( Y t ) reduced system , Y = G ( X ) slow variables (3) Theorem Assume H1, H2. Let Y ∗ ∈ R q be a hyperbolic equilibrium of (3), then X ∗ = E ( Y ∗ ) hyperbolic equilibrium of (2). 1 Under suitable convergence F ( k ) → ¯ F , for k large enough: k → X ∗ equil of (1). There exist X ∗ 1 The stability of Y ∗ , X ∗ , X ∗ k is the same. 2 logo.png The basins of attraction of X ∗ , X ∗ k cab described by that of Y ∗ . 3 M. Marvá (U. de Alcalá) A discrete disease-competition model Osnabrück - April 2019 7 / 20

  8. Single species two time scales epidemic model: basic dynamics Fast process : SIS epidemics  ( N, 0) , ifR 0 ≤ 1   S  F S − βIS  S + I + γI k →∞ F ( k ) ( S, I ) =   lim    ( ν, (1 − ν )) N, ifR 0 > 1 I + βIS   S + I − γI I  1 ν = R 0 Constant total population size: N = S ( t ) + I ( t ) 1 Where R 0 = β/γ is the basic reproduction number . 2 Slow process : Beverton-Holt population dynamics  0 if b ≤ 1      b N ( t + 1) = 1+ cN ( t ) N ( t ) , ⇒ lim t →∞ N ( t ) =   N ∗ = b − 1    if b > 1     c logo.png M. Marvá (U. de Alcalá) A discrete disease-competition model Osnabrück - April 2019 8 / 20

  9. F ( k ) N ( t ) � � Single species two time scales epidemic model: N ( t + 1 ) = S Complete system: we distinguish S and I b S  S ( t + 1 ) = 1 + c SS S ( t ) + c SI I ( t ) S ( t )     b I   I ( t + 1 ) = 1 + c IS S ( t ) + c II I ( t ) I ( t )   S ( t ) ≡ F S ( k ) ( S ( t ) , I ( t )) I ( t ) ≡ F ( k ) I ( S ( t ) , I ( t )) But also SIS is faster than population dynamics b S ν N ( t )  S ( t + 1 ) =   1 + c SS ν N ( t ) + c SI ( 1 − ν ) N ( t )     Auxiliary system: k → ∞   b I ( 1 − ν ) N ( t )   I ( t + 1 ) =   1 + c IS ν N ( t ) + c II ( 1 − ν ) N ( t ) b 1 N ( t ) b 2 N ( t ) Reduced system: N = S + I N ( t + 1 ) = 1 + c 1 N ( t ) + 1 + c 2 N ( t ) logo.png M. Marvá (U. de Alcalá) A discrete disease-competition model Osnabrück - April 2019 9 / 20

  10. Results 1: persistence or extinction If ν b S + ( 1 − ν ) b I ≤ 1 then t →∞ N ( t ) = 0 lim t →∞ ( S ( t ) , I ( t )) = ( 0 , 0 ) lim ⇔ For instance, if b S , b I < 1 b S > 1 and b I < 1 − ν b S 1 − ν If ν b S + ( 1 − ν ) b I > 1 then � (( b 2 − 1 ) c 1 + ( b 1 − 1 ) c 2 ) 2 + 4 ( b 1 + b 2 − 1 ) c 1 c 2 � � ( b 2 − 1 ) c 1 + ( b 1 − 1 ) c 2 + t →∞ N ( t ) = N ∗ = lim 2 c 1 c 2 t →∞ ( S ( t ) , I ( t )) ≈ ( ν N ∗ , ( 1 − ν ) N ∗ ) lim ⇔ For instance, if b S , b I > 1 b S < 1 and b I > 1 − ν b S logo.png 1 − ν M. Marvá (U. de Alcalá) A discrete disease-competition model Osnabrück - April 2019 10 / 20

  11. Results 2: disease mediated competition (affects growth) That is, c SS = c II = c SI = c IS , then N ∗ = b S − b I R 0 + b I − 1 1 e N ∗ b S − 1 b S − 1 df Disease reduced fecundity b I < b S Disease enhanced fecundity b I > b S logo.png M. Marvá (U. de Alcalá) A discrete disease-competition model Osnabrück - April 2019 11 / 20

  12. Results 2, disease mediated competition (affects growth) That is, c SS = c II = c SI = c IS and b I = α b S , then N ∗ = b S − α b S R 0 + α b S − 1 1 e N ∗ b S − 1 b S − 1 df logo.png M. Marvá (U. de Alcalá) A discrete disease-competition model Osnabrück - April 2019 12 / 20

  13. Two competing species: the Leslie-Gower model b 1 N 1 ( t + 1 ) = 1 + c 11 N 1 ( t )+ c 12 N 2 ( t ) N 1 ( t ) b 2 N 2 ( t + 1 ) = 1 + c 21 N 1 ( t )+ c 22 N 2 ( t ) N 2 ( t ) N 2 N 2 E ∗ 2 Case A Case B b i ≤ 1 then N i ( t ) → 0 Γ 1 Γ 2 b i > 1 species i can survive alone E ∗ 2 Γ 2 Γ 1 N 1 N 1 Forward bounded solutions E ∗ E ∗ 0 E ∗ 0 E ∗ 1 1 Solutions are eventually componentwise N 2 N 2 monotone E ∗ Case C 1 2 Case C 2 Γ 1 E ∗ Γ i points whose i -coordinate is held fixed Γ 2 Γ 1 2 Γ 2 by the map N 1 N 1 E ∗ E ∗ 0 E ∗ 0 E ∗ 1 1 J.M. Cushing et al, 2004. Some Discrete Competition Models and the Competitive Exclusion Principle JDEA, 10 (13-15): 1139-1151 HL Smith 1998. Planar competitive and cooperative difference equations. JDEA, 3(5-6):335-357 logo.png M. Marvá (U. de Alcalá) A discrete disease-competition model Osnabrück - April 2019 13 / 20

  14. Two time scales competition with specialist parasite N ( t + 1 ) = S ( F ( k ) ( N ( t ))) Species 1: S and I S ( t ) ≡ F ( k ) I ( t ) ≡ F ( k ) S ( S ( t ) , I ( t )) I ( S ( t ) , I ( t )) b S F ( k ) S ( S ( t ) , I ( t )) S 1 ( t + 1 ) = 1 + c SS F ( k ) S ( S ( t ) , I ( t )) + c SI F ( k ) I ( S ( t ) , I ( t )) + c S 2 N 2 ( t ) b I F ( k ) I ( S ( t ) , I ( t )) I 1 ( t + 1 ) = 1 + c IS F ( k ) S ( S ( t ) , I ( t )) + c II F ( k ) I ( S ( t ) , I ( t )) + c I 2 N 2 ( t ) b 2 N 2 ( t ) N 2 ( t + 1 ) = 1 + c 2 S F ( k ) S ( S ( t ) , I ( t )) + c 2 I F ( k ) I ( S ( t ) , I ( t )) + c 22 N 2 ( t ) logo.png M. Marvá (U. de Alcalá) A discrete disease-competition model Osnabrück - April 2019 14 / 20

  15. Reduced Discrete SIS-competition model ν b S N 1 ( t ) N 1 ( t + 1 ) = 1 + ( ν c SS + ( 1 − ν ) c SI ) N 1 ( t ) + c S 2 N 2 ( t ) ( 1 − ν ) b I N 1 ( t ) + 1 + ( ν c IS + ( 1 − ν ) c II ) N 1 ( t ) + c I 2 N 2 ( t ) b 2 N 2 ( t ) N 2 ( t + 1 ) = 1 + ( ν c 2 S + ( 1 − ν ) c 2 I ) N 1 ( t ) + c 22 N 2 ( t ) All solutions in R 2 + are Forward bounded 1 Eventually componentwise monotone 2 Besides If ν b S + ( 1 − ν ) b I ≤ 1 then N 1 ( t ) → 0 1 If b 2 ≤ 1 then N 2 ( t ) → 0 2 Otherwise, species can survive alone 3 R. Bravo de la Parra, M. Marvá, E. Sánchez, L. Sanz 2017. Discrete Models of Disease and Competition ( Discrete Dynamics in Nature and Society, Article ID 5310837 ) HL Smith 1998. Planar competitive and cooperative difference equations. JDEA, 3(5-6):335-357 logo.png M. Marvá (U. de Alcalá) A discrete disease-competition model Osnabrück - April 2019 15 / 20

  16. Reduced Discrete SIS-competition model N 2 N 2 E ∗ 2 Case A Case B Γ 1 Γ 2 E ∗ E ∗ E ∗ 2 3 3 Γ 2 Γ 1 N 1 N 1 E ∗ E ∗ E ∗ E ∗ 1 0 0 1 N 2 N 2 E ∗ 2 Case C 2 Case C 1 E ∗ 2 Γ 2 Γ 1 Γ 1 Γ 2 N 1 N 1 logo.png E ∗ E ∗ E ∗ E ∗ 0 1 0 1 M. Marvá (U. de Alcalá) A discrete disease-competition model Osnabrück - April 2019 16 / 20

  17. Reduced Discrete SIS-competition model N 2 E ∗ Case D E ∗ 2 3 E ∗ 4 N 1 E ∗ E ∗ 0 1 Figure: Case D . Bi-stability with interior equilibrium point logo.png M. Marvá (U. de Alcalá) A discrete disease-competition model Osnabrück - April 2019 17 / 20

  18. Disease modified competition (affects competitive abilities) b S = b I > 1 , c SS = 3 > c SI = 2 . 8 , c 2 S = 2 > c 2 I = 1 . 8 , b 2 = 5, c S 2 = c IS = c II = c I 2 = c 22 = 1, ν ∈ ( 0 , 1 ] 7 C 1 6 D A 5 B b S C 2 4 3 0 . 4 0 0 . 2 0 . 6 0 . 8 1 ν = 1 /R 0 Increasing R 0 improves the species 1 competition outcome. logo.png M. Marvá (U. de Alcalá) A discrete disease-competition model Osnabrück - April 2019 18 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend