deletion in abstract voronoi diagrams in expected linear
play

Deletion in Abstract Voronoi diagrams in Expected Linear Time Kolja - PowerPoint PPT Presentation

Universit` a della Svizzera italiana Deletion in Abstract Voronoi diagrams in Expected Linear Time Kolja Junginger and Evanthia Papadopoulou Universit` a della Svizzera italiana, Lugano, Switzerland HMI Workshop, June 18-21, 2018


  1. Universit` a della Our results Svizzera italiana Introduce Voronoi-like diagrams – relaxed version of a Voronoi diagram (easier to compute) A simple, randomized incremental algorithm for updating abstract Voronoi diagrams after deletion of one site in expected linear time . 11

  2. Universit` a della Our results Svizzera italiana Introduce Voronoi-like diagrams – relaxed version of a Voronoi diagram (easier to compute) A simple, randomized incremental algorithm for updating abstract Voronoi diagrams after deletion of one site in expected linear time . – adapt to the farthest abstract Voronoi diagram , after the sequence of its faces at infinity is known. 11

  3. Universit` a della Overview Svizzera italiana • Define abstract Voronoi diagrams (AVDs). • Define Voronoi-like diagrams . • Properties of Voronoi-like diagrams. • Define an insertion operation on Voronoi-like diagrams. • Sketch a randomized incremental algorithm. 12

  4. Universit` a della Abstract Voronoi diagrams Svizzera italiana Rolf Klein. Concrete and Abstract Voronoi Diagrams . 1989. 13

  5. Universit` a della Abstract Voronoi diagrams Svizzera italiana S abstract sites, n = | S | . J ( p, q ) bisector p q Rolf Klein. Concrete and Abstract Voronoi Diagrams . 1989. 13

  6. Universit` a della Abstract Voronoi diagrams Svizzera italiana S abstract sites, n = | S | . J ( p, q ) dominance region of p D ( p, q ) p q Rolf Klein. Concrete and Abstract Voronoi Diagrams . 1989. 13

  7. Universit` a della Abstract Voronoi diagrams Svizzera italiana S abstract sites, n = | S | . J ( p, q ) p q D ( q, p ) dominance region of q Rolf Klein. Concrete and Abstract Voronoi Diagrams . 1989. 13

  8. Universit` a della Abstract Voronoi diagrams Svizzera italiana S abstract sites, n = | S | . J ( p, q ) p q Given a set of bisectors J := { J ( p, q ) : p � = q ∈ S } . Rolf Klein. Concrete and Abstract Voronoi Diagrams . 1989. 13

  9. Universit` a della Abstract Voronoi diagrams Svizzera italiana r p VR ( p ) p q VR ( p ) = � q ∈ S \{ p } D ( p, q ) Voronoi region: Rolf Klein. Concrete and Abstract Voronoi Diagrams . 1989. 13

  10. Universit` a della Abstract Voronoi diagrams Svizzera italiana V ( S ) = R 2 \ � Voronoi diagram: p ∈ S VR ( p, S ) Rolf Klein. Concrete and Abstract Voronoi Diagrams . 1989. 13

  11. Universit` a della Admissible bisector system Svizzera italiana Given J := { J ( p, q ) : p � = q ∈ S } . For every S ′ ⊆ S : (A1) Voronoi regions are non-empty and connected. (A2) Voronoi regions cover the plane. (A3) Bisectors are unbounded Jordan curves. (A4) Transversal and finite # intersections. Rolf Klein. Concrete and Abstract Voronoi Diagrams . 1989. 14

  12. Universit` a della Admissible bisector system Svizzera italiana • For simplicity we always assume a big circle Γ , containing all intersections. We restrict all computations in the interior of Γ . • VR ( s ) can be bounded, unbounded, and have several openings to infinity ( Γ -arcs). Γ Γ Γ VR( s ) VR( s ) VR( s ) Rolf Klein. Concrete and Abstract Voronoi Diagrams . 1989. 15

  13. Universit` a della Site deletion Svizzera italiana Problem : Compute V ( S \ s ) ∩ VR ( s ) (within VR ( s ) ). VR ( s ) 16

  14. Universit` a della Site deletion Svizzera italiana Problem : Compute V ( S \ s ) ∩ VR ( s ) (within VR ( s ) ). VR ( s ) Lemma: V ( S \ s ) ∩ VR ( s ) is a forest with one face per Voronoi edge of ∂ VR ( s ) . 16

  15. Universit` a della Voronoi regions of arcs Svizzera italiana Idea : Treat the boundary arcs (Voronoi edges) of VR ( s ) as sites . 17

  16. Universit` a della Voronoi regions of arcs Svizzera italiana Idea : Treat the boundary arcs (Voronoi edges) of VR ( s ) as sites . • Denote these arcs by S . S 17

  17. Universit` a della Voronoi regions of arcs Svizzera italiana Idea : Treat the boundary arcs (Voronoi edges) of VR ( s ) as sites . • Denote these arcs by S . • Voronoi diagram of S is V ( S ) = V ( S \ s ) ∩ VR ( s ) . S 17

  18. Universit` a della Voronoi regions of arcs Svizzera italiana Idea : Treat the boundary arcs (Voronoi edges) of VR ( s ) as sites . • Denote these arcs by S . • Voronoi diagram of S is V ( S ) = V ( S \ s ) ∩ VR ( s ) . • For an arc α ∈ S , assign VR ( α ) = face of V ( S ) incident to α . α S 17

  19. Universit` a della Voronoi regions of arcs Svizzera italiana Idea : Treat the boundary arcs (Voronoi edges) of VR ( s ) as sites . • Denote these arcs by S . • Voronoi diagram of S is V ( S ) = V ( S \ s ) ∩ VR ( s ) . • For an arc α ∈ S , assign VR ( α ) = face of V ( S ) incident to α . Site s α can have Θ( n ) faces within VR ( s ) . Treat each face independently (different arc). VR ( s α ) s α = site defining α α S 17

  20. Universit` a della Svizzera italiana Wish : Voronoi diagram of a subset of arcs S ′ ⊆ S . But that does not exist. S ′ ⊆ S 18

  21. Universit` a della Svizzera italiana Wish : Voronoi diagram of a subset of arcs S ′ ⊆ S . But that does not exist. Instead we define a Voronoi-like diagram for a subset of arcs S ′ ⊆ S . S ′ ⊆ S 18

  22. Universit` a della Svizzera italiana Wish : Voronoi diagram of a subset of arcs S ′ ⊆ S . But that does not exist. Instead we define a Voronoi-like diagram for a subset of arcs S ′ ⊆ S . Next: Definitions... S ′ ⊆ S 18

  23. Universit` a della p -monotone paths Svizzera italiana Let p ∈ S be a site. Let J p be the arrangement of all p -related bisectors. p t p r J p p q 19

  24. Universit` a della p -monotone paths Svizzera italiana Let p ∈ S be a site. Let J p be the arrangement of all p -related bisectors. A path in the arrangement J p is p -monotone , if any two adjacent edges α, β coincide locally with the Voronoi edges of VR ( p, { p, s α , s β } ) . VR ( p ) α β p p s α s β p -monotone path p t p r J p p q VR( p ) α p t p p p s α s β q β P 19

  25. Universit` a della p -monotone paths Svizzera italiana Let p ∈ S be a site. Let J p be the arrangement of all p -related bisectors. A path in the arrangement J p is p -monotone , if any two adjacent edges α, β coincide locally with the Voronoi edges of VR ( p, { p, s α , s β } ) . A path in J p is the p -envelope , if it is the boundary of VR ( p ) p -envelope p t p t p r J p p q 19

  26. Universit` a della p -monotone paths Svizzera italiana Let p ∈ S be a site. Let J p be the arrangement of all p -related bisectors. A path in the arrangement J p is p -monotone , if any two adjacent edges α, β coincide locally with the Voronoi edges of VR ( p, { p, s α , s β } ) . VR ( p ) α β p p s α s β p -monotone path p t p r J p p q p t p q P 19

  27. Universit` a della Boundary curve Svizzera italiana Let S ′ ⊆ S = boundary arcs (Voronoi edges) along ∂ VR ( s ) . S ′ ⊆ S 20

  28. Universit` a della Boundary curve Svizzera italiana Let S ′ ⊆ S = boundary arcs (Voronoi edges) along ∂ VR ( s ) . Consider the arrangement of all s -related bisectors of arcs in S ′ . S ′ 20

  29. Universit` a della Boundary curve Svizzera italiana Let S ′ ⊆ S = boundary arcs (Voronoi edges) along ∂ VR ( s ) . A boundary curve P for S ′ is an s -monotone path in the arrangement of s -related bisectors that contains every arc in S ′ . S ′ P 20

  30. Universit` a della Boundary curve Svizzera italiana Let S ′ ⊆ S = boundary arcs (Voronoi edges) along ∂ VR ( s ) . A boundary curve P for S ′ is an s -monotone path in the arrangement of s -related bisectors that contains every arc in S ′ . S ′ can have different boundary curves. S ′ P 20

  31. Universit` a della Boundary curve Svizzera italiana original arc (contains an arc of S ′ ) S ′ Γ -arc auxiliary arc (does not contain an arc of S ′ ) 20

  32. Universit` a della Boundary curve Svizzera italiana S ′ domain D P P 20

  33. Universit` a della Voronoi-like diagram Svizzera italiana Definition: Given a boundary curve P , the Voronoi-like diagram V l ( P ) is a subdivision of the domain D P such that: P 21

  34. Universit` a della Voronoi-like diagram Svizzera italiana Definition: Given a boundary curve P , the Voronoi-like diagram V l ( P ) is a subdivision of the domain D P such that: P 21

  35. Universit` a della Voronoi-like diagram Svizzera italiana Definition: Given a boundary curve P , the Voronoi-like diagram V l ( P ) is a subdivision of the domain D P such that: • Each boundary arc α ∈ P has one region R ( α ) . α R ( α ) P 21

  36. Universit` a della Voronoi-like diagram Svizzera italiana Definition: Given a boundary curve P , the Voronoi-like diagram V l ( P ) is a subdivision of the domain D P such that: • Each boundary arc α ∈ P has one region R ( α ) . R ( α ) • ∂R ( α ) is an s α -monotone path plus α . α α R ( α ) P 21

  37. Universit` a della Properties of Voronoi-like diagrams Svizzera italiana • Voronoi-like regions are supersets of the real Voronoi regions. R ( α ) α P 22

  38. Universit` a della Properties of Voronoi-like diagrams Svizzera italiana • Voronoi-like regions are supersets of the real Voronoi regions. R ( α ) α VR ( α ) P 22

  39. Universit` a della Properties of Voronoi-like diagrams Svizzera italiana • Voronoi-like regions are supersets of the real Voronoi regions. • For all arcs S , V l ( S ) equals the real diagram V ( S )= V ( S \ s ) ∩ VR ( s ) . S 22

  40. Universit` a della Properties of Voronoi-like diagrams Svizzera italiana • Voronoi-like regions are supersets of the real Voronoi regions. • For all arcs S , V l ( S ) equals the real diagram V ( S )= V ( S \ s ) ∩ VR ( s ) . • Missing arc lemma: Suppose an α -related bisector appears within R ( α ) . Then there is an arc β “missing” from P . R ( α ) α P 22

  41. Universit` a della Properties of Voronoi-like diagrams Svizzera italiana • Voronoi-like regions are supersets of the real Voronoi regions. • For all arcs S , V l ( S ) equals the real diagram V ( S )= V ( S \ s ) ∩ VR ( s ) . • Missing arc lemma: Suppose an α -related bisector appears within R ( α ) . Then there is an arc β “missing” from P . β J ( s, s β ) R ( α ) α P 22

  42. Universit` a della Uniqueness of Voronoi-like diagrams Svizzera italiana Theorem: The Voronoi-like diagram V l ( P ) of a boundary curve P is unique . V l ( P ) P 23

  43. Universit` a della No monotonicity property Svizzera italiana Voronoi-like regions do not have the standard monotonicity property of real Voronoi regions: Voronoi diagram: S ′ ⊆ S ⇒ VR ( p, S ) ⊆ VR ( p, S ′ ) Voronoi-like diagram: S ′ ⊆ S �⇒ R ( α, S ) ⊆ R ( α, S ′ ) 24

  44. Universit` a della No monotonicity property Svizzera italiana Voronoi-like regions do not have the standard monotonicity property of real Voronoi regions: Voronoi diagram: S ′ ⊆ S ⇒ VR ( p, S ) ⊆ VR ( p, S ′ ) Voronoi-like diagram: S ′ ⊆ S �⇒ R ( α, S ) ⊆ R ( α, S ′ ) In proofs, use missing-arc lemma instead 24

  45. Universit` a della Arc insertion Svizzera italiana 25

  46. Universit` a della Arc insertion Svizzera italiana Problem : Given a boundary curve P for S ′ ⊂ S and its Voronoi-like diagram V l ( P ) , insert arc β ∗ ∈ S \ S ′ , prolong β ∗ ⊆ β , compute R ( β ) , and update the diagram to V l ( P ) ⊕ β . V l ( P ) P 25

  47. Universit` a della Arc insertion Svizzera italiana Problem : Given a boundary curve P for S ′ ⊂ S and its Voronoi-like diagram V l ( P ) , insert arc β ∗ ∈ S \ S ′ , prolong β ∗ ⊆ β , compute R ( β ) , and update the diagram to V l ( P ) ⊕ β . V l ( P ) β ∗ P 25

  48. Universit` a della Arc insertion Svizzera italiana Problem : Given a boundary curve P for S ′ ⊂ S and its Voronoi-like diagram V l ( P ) , insert arc β ∗ ∈ S \ S ′ , prolong β ∗ ⊆ β , compute R ( β ) , and update the diagram to V l ( P ) ⊕ β . V l ( P ) β P ⊕ β 25

  49. Universit` a della Arc insertion Svizzera italiana Problem : Given a boundary curve P for S ′ ⊂ S and its Voronoi-like diagram V l ( P ) , insert arc β ∗ ∈ S \ S ′ , prolong β ∗ ⊆ β , compute R ( β ) , and update the diagram to V l ( P ) ⊕ β . V l ( P ) R ( β ) β P ⊕ β 25

  50. Universit` a della Arc insertion Svizzera italiana Problem : Given a boundary curve P for S ′ ⊂ S and its Voronoi-like diagram V l ( P ) , insert arc β ∗ ∈ S \ S ′ , prolong β ∗ ⊆ β , compute R ( β ) , and update the diagram to V l ( P ) ⊕ β . V l ( P ) ⊕ β R ( β ) R ( β ) β P ⊕ β 25

  51. Universit` a della Arc insertion Svizzera italiana • Compute the boundary curve P ⊕ β containing β ( β ∗ ⊆ β ). β ∗ P 26

  52. Universit` a della Arc insertion Svizzera italiana • Compute the boundary curve P ⊕ β containing β ( β ∗ ⊆ β ). β ∗ P 26

  53. Universit` a della Arc insertion Svizzera italiana • Compute the boundary curve P ⊕ β containing β ( β ∗ ⊆ β ). β P ⊕ β 26

  54. Universit` a della Arc insertion Svizzera italiana • Compute the boundary curve P ⊕ β containing β ( β ∗ ⊆ β ). β P ⊕ β 26

  55. Universit` a della Arc insertion Svizzera italiana • Compute the boundary curve P ⊕ β containing β ( β ∗ ⊆ β ). • Compute the merge curve J ( β ) ; it defines region R ( β ) . J ( β ) β P ⊕ β 26

  56. Universit` a della Arc insertion Svizzera italiana • Compute the boundary curve P ⊕ β containing β ( β ∗ ⊆ β ). • Compute the merge curve J ( β ) ; it defines region R ( β ) . • Insert R ( β ) in V l ( P ) and derive V l ( P ) ⊕ β : J ( β ) β P ⊕ β 26

  57. Universit` a della Arc insertion Svizzera italiana • Compute the boundary curve P ⊕ β containing β ( β ∗ ⊆ β ). • Compute the merge curve J ( β ) ; it defines region R ( β ) . • Insert R ( β ) in V l ( P ) and derive V l ( P ) ⊕ β : J ( β ) β P ⊕ β 26

  58. Universit` a della Insertion of β splits an arc Svizzera italiana When inserting β , a face (and its arc) may split in two, creating a new auxiliary arc ( γ ′ ) that was not in S . V l ( P ) P 27

  59. Universit` a della Insertion of β splits an arc Svizzera italiana When inserting β , a face (and its arc) may split in two, creating a new auxiliary arc ( γ ′ ) that was not in S . V l ( P ) β ∗ P 27

  60. Universit` a della Insertion of β splits an arc Svizzera italiana When inserting β , a face (and its arc) may split in two, creating a new auxiliary arc ( γ ′ ) that was not in S . V l ( P ) β ∗ P 27

  61. Universit` a della Insertion of β splits an arc Svizzera italiana When inserting β , a face (and its arc) may split in two, creating a new auxiliary arc ( γ ′ ) that was not in S . V l ( P ) J ( β ) β P γ ′ γ 27

  62. Universit` a della Insertion of β splits an arc Svizzera italiana When inserting β , a face (and its arc) may split in two, creating a new auxiliary arc ( γ ′ ) that was not in S . V l ( P ) ⊕ β R ( β ) β P ⊕ β γ ′ γ 27

  63. Universit` a della Arc insertion Svizzera italiana Theorem: The merge curve J ( β ) is an s β -monotone path. J ( β ) β P ⊕ β 28

  64. Universit` a della Arc insertion Svizzera italiana Theorem: The merge curve J ( β ) is an s β -monotone path. Theorem: V l ( P ) ⊕ β is the Voronoi-like diagram, V l ( P ⊕ β ) . V l ( P ⊕ β ) J ( β ) β P ⊕ β 28

  65. Universit` a della Proof sketch Svizzera italiana Theorem: The merge curve J ( β ) is an s β -monotone path. Use a bi-directional induction starting at the two endpoints of β . Show: Γ P J ( β ) β 29

  66. Universit` a della Proof sketch Svizzera italiana Theorem: The merge curve J ( β ) is an s β -monotone path. Use a bi-directional induction starting at the two endpoints of β . Show: Γ • J ( β ) cannot hit a boundary P arc. J ( β ) β 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend