deep inelastic scattering recent results and future
play

Deep Inelastic Scattering: Recent Results and Future D.Naples - PowerPoint PPT Presentation

Deep Inelastic Scattering: Recent Results and Future D.Naples University of Pittsburgh NuInt 2007 Fermilab June 3, 2007 Outline Overview of Neutrino DIS Recent Results NuTeV High energy range Chorus 10-300 GeV WIP


  1. Deep Inelastic ν Scattering: Recent Results and Future D.Naples University of Pittsburgh NuInt 2007 Fermilab June 3, 2007

  2. Outline ◮ Overview of Neutrino DIS ◮ Recent Results • NuTeV High energy range • Chorus 10-300 GeV WIP • Nomad ◮ Future WIP Low energy range • Minos 5-50 GeV • Minerva – p.1/ ??

  3. CC Neutrino Deep Inelastic Scattering Lorentz-invariant quantities in terms of measured E µ , θ µ , E had : ν − ν µ µ − µ µ 8 Q 2 = 4( E µ + E had ) E µ sin 2 θ µ → Squared 4-momentum transfer > 2 > > Q 2 > > x = → Fractional struck quark momentum > 2 ME had > > W + < E had W + y = → Inelasticity E µ + E had > W 2 = M 2 + 2 ME HAD − Q 2 > xP → Squared invariant final state mass > xP > > > > > ν = E had → Energy transfered to hadronic system : E had E had Neutrino Scattering Cross-Section: G 2 d 2 σ ν ( ν ) + y 2 F ME ν »„ 1 − y − Mxy « ± y (1 − y – F ν ( ν ) 2 2 xF ν ( ν ) 2 ) xF ν ( ν ) = 2 1 3 Q 2 dxdy 2 E ν W ) 2 π (1 + M 2 Structure functions in the parton model: h xq ν ( ν ) + xq ν ( ν ) i 2 xF 1 ( x, Q 2 ) = 1+(2 Mx/Q )2 ◮ 2 xF ν ( ν ) 1+ R ( x,Q 2) F 2 ( x, Q 2 ) ( x, Q 2 ) = Σ 1 h xq ν ( ν ) + xq ν ( ν ) + 2 xk ν ( ν ) i ◮ F ν ( ν ) ( x, Q 2 ) = Σ 2 h xq ν ( ν ) − xq ν ( ν ) i ◮ xF ν ( ν ) ( x, Q 2 ) = Σ 3 – p.2/ ??

  4. Neutrinos as Probes Challenges ◮ ν Flux spectrum is difficult to predict/measure. ◮ Statistical precision • Require highly intense ν beams. • Massive Detectors ⇒ Nuclear Effects F 2 → measured precisely by charged-lepton DIS. xF 3 → uniquely determined by neutrino DIS ◮ Sensitive to valence quark distributions. ◮ Non-singlet QCD evolution, theoretically more robust. ◮ ∆ xF 3 ⇒ sensitive to strange and charm pdfs. x ( F ν 3 − F ν 3 ) = 4 x ( s − c ) – p.3/ ??

  5. High Energy Range: NuTeV, Chorus, Nomad – p.4/ ??

  6. - (k ′ ) ν µ (k) µ NuTeV + (q) W X(p ′ ) N(p) ◮ Data taking: 1996-97 FNAL fixed target. ◮ Many physics topics ⇒ Main motivation: precise meas. of sin 2 θ W . [PRL 88, 091802 (2002)] ◮ Iron Calorimeter + Muon Spectrometer ◮ SF events: 8 . 6 × 10 5 ν and 2 . 3 × 10 5 ν B = 15kG φ < E ν > ∼ 120 GeV, < Q 2 > ∼ 25 GeV 2 ∆ E 0.86 = E E Steel/scint 10cm sampling ∆ P Tracking 20cm sampling P ~ 11% ◮ Sign-selected: Separate high-purity ν or ¯ ν • ν mode 3 × 10 − 4 ν • ν mode 4 × 10 − 3 ν ◮ Tags leading muon in CC interactions • Toroid polarity always focusing ’right’ sign µ . • Lead µ → Dimuon event sample – p.5/ ??

  7. � � ✁ ✁ ✁ ✁ � � � � � � � - (k ′ ) ν µ (k) µ Continuous Calibration + (q) W X(p ′ ) N(p) ν v o k n e r e C D R TEST BEAM m T 0 7 m 3 8 Beam cycle test beam neutrinos Precise in-situ calibration of NuTeV Detector: ◮ Alternate every cycle with Neutrino beam. ◮ Hadrons, muons, electrons (4.5–190GeV) ◮ Ability to map response. ◮ IMPROVED: Calibration of Energy Scale. ∆ E HAD = 0 . 43% • Hadrons: E HAD ∆ E µ • Muons: = 0 . 7% E µ – p.6/ ??

  8. - (k ′ ) ν µ (k) µ Cross Section Extraction + (q) W X(p ′ ) N(p) d 2 σ ν ( ν ) ∆ N ν ( ν ) 1 ijk ijk Differential Cross Section in terms of flux and number of events: ∝ Φ( E ν dxdy i ) ∆ x j ∆ y k ◮ Data: • CC Event Sample: toroid analyzed muon ◮ [Phys. Rev. D 74, 012008 (2006)] ⋆ Containment and good muon track ⋆ E µ > 15 GeV , E ν ∈ (30 , 350) GeV , Data • Flux Sample: Flux Cross Section ⋆ Low ν CC events ( E had < 20 GeV ) sample sample • Cross Section Sample: ⋆ E had > 10 GeV , Q 2 > 1 GeV 2 ◮ Monte Carlo: Cross • Used for acceptance and smearing corrections Flux Section • Cross-Section Model ⋆ LO QCD inspired parametrization: fi t to data : [A.Buras, K.Gaemers; Nucl.Phys.B132,249(1978) ⋆ Data with lower Q 2 at high- x ( x > 0 . 4 ) included Monte Carlo in fi t to constrain higher-twist. (SLAC,NMC,BCDMS) ⋆ for Q 2 < 1 . 35 GeV 2 use GRV Q 2 evolution Cross Section Model +Detector Simulation • Detector model: ⋆ E µ and E had resolution functions parametrized using test beam ⋆ θ µ parametrized using GEANT hit level MC – p.7/ ??

  9. - (k ′ ) ν µ (k) µ Relative Flux Extraction + (q) W X(p ′ ) N(p) ◮ Flux normalized using total neutrino cross “Low ν method”: Integrate data at low ν ( < 20 GeV) section world average (30-200 GeV): σ ν E = 0 . 677 ± 0 . 014 × 10 − 38 cm 2 ◮ Integrate diff. cross section over x at fi xed ν : GeV ν 2 dσ 1+ B ν − C ◮ Test of Flux extraction: ν → 0 dν = A ( ) → A − 2 E 2 A E ν A ν |{z} | {z } 0.8 small small Neutrino Z σ /E x 10 -38 cm 2 /GeV 0.7 8 G2 FM F 2 (x , Q 2 )dx A = > π > > 0.6 > > Z ˆ F 2 (x , Q 2 ) ∓ xF 3 (x , Q 2 ) ˜ dx G2 > FM < B = − 0.5 π 1 + 2Mx ! > 1 + R(x , Q 2 ) − Mx Z > Antineutrino G2 0.4 > FM F 2 (x , Q 2 ) ν ν − 1 dx > C = B − > π > : 0.3 E ) 2 terms small at low ν and high E. 0.2 ◮ ν E and ( ν 50 100 150 200 250 300 350 E ν (GeV) ◮ Cross section constant, indep. of E ν σ ν E ν is flat as function of E ν ◮ Φ(E) ∝ N(E , ν < ν o ) ◮ σ ν Z ν 0 dN σ ν agrees with world average ◮ dν Φ( E ν ) = dν ν 2 1 + B E ν − C ν 0 2 E 2 A A ν ◮ Fit to dN d ν data determines B C A , A – p.8/ ??

  10. - (k ′ ) ν µ (k) µ Modeling of Data + (q) W X(p ′ ) N(p) x 10 Events per 10GeV Data/MC 1.1 30000 1.1 Events per 10GeV Data/MC 1.05 10000 20000 1.05 7500 1 1 5000 10000 0.95 0.95 2500 0.9 0 0.9 100 200 300 100 200 300 0 100 200 300 100 200 300 E µ (GeV) E µ (GeV) E µ (GeV) E µ (GeV) x 10 2 1.1 Events per 10GeV Data/MC 1.1 Events per 10GeV Data/MC 60000 1.05 1500 1.05 40000 1 1000 1 0.95 20000 0.95 500 0.9 0 0.9 0 100 200 300 100 200 300 100 200 300 100 200 300 E HAD (GeV) E HAD (GeV) E HAD (GeV) E HAD (GeV) Events per 5mrad Data/MC 1.1 1.1 Events per 5mrad Data/MC 20000 1.05 60000 1.05 1 40000 1 10000 0.95 0.95 20000 0.9 0.9 0 0 0 0.05 0.1 0.15 0 0.05 0.1 0.15 0 0.05 0.1 0.15 0 0.05 0.1 0.15 θ µ (rad) θ µ (rad) θ µ (rad) θ µ (rad) ◮ Monte Carlo Describes the data well over entire kinematic range. ( χ 2 /dof=2225/2599) • E µ and E HAD Smearing parameterized from Test beam measurements. • θ µ from Geant Detector simulation. – p.9/ ??

  11. - (k ′ ) ν µ (k) µ Cross Section Systematic Uncertainties + (q) W X(p ′ ) N(p) Provide a point-to-point covariance matrix: 7 systematic uncertainty sources considered: M αβ = P 7 i δ i | α δ i | β • E µ and E HAD scales (affect both cross • δ i | α is the 1 σ shift in data point α due to systematic section and flux extraction) uncertainty i of size ǫ i . • m c and B A (are important for the flux dxdy (+ ǫi ) − d 2 σ d 2 σ dxdy ( − ǫi ) extraction . m c =1.4 ± 0.18. δ i | α = 2 • E µ and E HAD smearing models. ◮ χ 2 including all systematic uncertainties: (important at high energy). X χ 2 = ( D α − f theory ) M − 1 αβ ( D β − f theory ) α β • Cross section model uncertainty (small). αβ • overall normalization uncertainty 2 . 1% • M αβ is point to point covariance matrix: (from uncertainty in world average • D α - measured differential cross section absolute cross section at high energy.) • f theory - the model prediction α – p.10/ ??

  12. - (k ′ ) ν µ (k) µ NuTeV Differential Cross Section + (q) W X(p ′ ) N(p) Neutrino Neutrino Neutrino Neutrino Neutrino Neutrino Neutrino Neutrino Neutrino Neutrino Neutrino Neutrino Neutrino Neutrino Neutrino Neutrino Anti-Neutrino Anti-Neutrino Anti-Neutrino Anti-Neutrino Anti-Neutrino Anti-Neutrino Anti-Neutrino Anti-Neutrino Anti-Neutrino Anti-Neutrino Anti-Neutrino Anti-Neutrino Anti-Neutrino Anti-Neutrino Anti-Neutrino Anti-Neutrino x=0.015 1.5 1 0.5 ◮ Extracted ν ( ν ) − Fe Cross-Sections in x bins 2 x=0.045 E ν = 65 GeV 1.5 1 NuTeV 2 x=0.125 1/E d 2 σ /dxdy (x 10 -38 cm 2 /GeV) 1/E d 2 σ /dxdy (x 10 -38 cm 2 /GeV) 1/E d 2 σ /dxdy (x 10 -38 cm 2 /GeV) 1/E d 2 σ /dxdy (x 10 -38 cm 2 /GeV) 1/E d 2 σ /dxdy (x 10 -38 cm 2 /GeV) 1/E d 2 σ /dxdy (x 10 -38 cm 2 /GeV) 1/E d 2 σ /dxdy (x 10 -38 cm 2 /GeV) 1/E d 2 σ /dxdy (x 10 -38 cm 2 /GeV) 1/E d 2 σ /dxdy (x 10 -38 cm 2 /GeV) 1/E d 2 σ /dxdy (x 10 -38 cm 2 /GeV) 1/E d 2 σ /dxdy (x 10 -38 cm 2 /GeV) 1/E d 2 σ /dxdy (x 10 -38 cm 2 /GeV) 1/E d 2 σ /dxdy (x 10 -38 cm 2 /GeV) 1/E d 2 σ /dxdy (x 10 -38 cm 2 /GeV) 1/E d 2 σ /dxdy (x 10 -38 cm 2 /GeV) 1/E d 2 σ /dxdy (x 10 -38 cm 2 /GeV) 1.5 CCFR 1 0.5 2 x=0.175 CDHSW 1.5 1 0.5 • CDHSW [Z. Phys C49 187, 1991] x=0.275 1.5 1 • CCFR [PRL 86 2742, 2001, U.K Yang, Thesis] 0.5 x=0.35 1 ◮ Better control of largest systematic uncertainties: 0.5 E µ scale E had E ν range 0.6 x=0.55 0.4 CDHSW 2% 2.5% 20-200 GeV 0.2 CCFR 1% 1% 30-400 GeV x=0.65 0.2 0.1 NuTeV 0.7% 0.43% 30-350 GeV 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y (E=65 GeV) (E=65 GeV) (E=65 GeV) (E=65 GeV) (E=65 GeV) (E=65 GeV) (E=65 GeV) (E=65 GeV) (E=65 GeV) (E=65 GeV) (E=65 GeV) (E=65 GeV) (E=65 GeV) (E=65 GeV) (E=65 GeV) (E=65 GeV) – p.11/ ?? ▽

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend