dark matter candidates dark matter candidates
play

Dark Matter Candidates Dark Matter Candidates Stefano Scopel Korea - PowerPoint PPT Presentation

Dark Matter Candidates Dark Matter Candidates Stefano Scopel Korea Institute for Advanced Study - Korea Institute for Advanced Study Korea Institute for Advanced Study Korea Institute for Advanced Study - - Seoul - Seoul Seoul Seoul


  1. Dark Matter Candidates Dark Matter Candidates Stefano Scopel Korea Institute for Advanced Study - Korea Institute for Advanced Study Korea Institute for Advanced Study Korea Institute for Advanced Study - - Seoul - Seoul Seoul Seoul http://newton.kias.re.kr/~scopel TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11- TAUP 2007, Sendai, September 11- TAUP 2007, Sendai, September 11 -15 2007 -15 2007 15 2007 15 2007 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 - - - - 15 2007 15 2007 15 2007 15 2007

  2. Outline •Evidence for Dark Matter •Dark Matter properties •neutrinos •axions •WIMP candidates from UED, Little Higgs, SUSY •The neutralino •Relic abundance •Direct detection •Conclusions •Topics covered by other talks: •Experimental direct searches (Pierluigi Belli, Dan Bauer) •Indirect detection – theory (Lars Bergström) •Indirect detection – experiment (Piergiorgio Picozza) TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11- TAUP 2007, Sendai, September 11- -15 2007 -15 2007 15 2007 15 2007 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 - - - - 15 2007 15 2007 15 2007 15 2007

  3. Evidence�for�Dark�Matter •Spiral galaxies •rotation curves •Clusters & Superclusters •Weak gravitational lensing •Strong gravitational lensing •Galaxy velocities •X rays •Large scale structure •Structure formation •CMB anisotropy: WMAP •Ω tot =1 •Ω dark energy ~0.7 • Ω matter ~ 0.27 • Ω baryons ~0.05 Ω dark matter ~ 0.22 TAUP 2007, Sendai, September 11- TAUP 2007, Sendai, September 11 -15 2007 15 2007 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 - - 15 2007 15 2007

  4. The�properties�of�a�good�Dark�Matter�candidate: � stable�(protected�by�a�conserved� quantum�number) � no�charge,�no�colour (weakly� interacting) � cold,�non�dissipative � relic�abundance�compatible�to� * observation � motivated�by�theory�(vs.�“ad�hoc”) subdominant�candidates�– variety�is�common�in�Nature� →may�be�easier�to�detect TAUP 2007, Sendai, September 11- TAUP 2007, Sendai, September 11 -15 2007 15 2007 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 - - 15 2007 15 2007

  5. The�first�place�to�look�for�a�DM�candidate… TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11- -15 2007 15 2007 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 - - 15 2007 15 2007

  6. ∑ m Neutrino ν � = 2 − � ∝< σ > h 2 1 h v ν ν 91.5 � eV ann COLD HOT •Σm v <0.66�eV (WMAP+LSS+SN) •LEP:� N ν =2.994±0.012 → m ν ≥45�GeV 3�– 7�GeV → B ν h 2� ≤ 10 D3� •DM�searches� ~10�eV exclude: 10� GeV ≤ m ν ≤ 5 TeV (similar�constraints� for�sneutrinos and� KKDneutrinos) mix�with�sterile�component does�not�work (both�for�neutrinos�and�sneutrinos) TAUP 2007, Sendai, September 11- TAUP 2007, Sendai, September 11 -15 2007 15 2007 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 - - 15 2007 15 2007

  7. beyond�the� standard� model TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11- -15 2007 15 2007 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 - - 15 2007 15 2007

  8. (Incomplete) List�of�DM�candidates •RH�neutrinos •Axions •Lightest�Supersymmetric particle�(LSP)�– neutralino,� sneutrino,�axino •Lighest KaluzaDKlein� Particle�(LKP)� •Heavy�photon�in�Little� Higgs�Models •Solitons (QDballs,�BDballs) • Black�Hole�remnants •… TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11- TAUP 2007, Sendai, September 11- -15 2007 -15 2007 15 2007 15 2007 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 - - - - 15 2007 15 2007 15 2007 15 2007

  9. The�axion •Pseudo�Goldstone�boson�of�PecceiDQuinn�symmetry�introduced� to�explain�CP�conservation�in�QCD:�φ=�F�e iθ • •3�productions�mechanisms�in�the�early�Universe: 1)�misalignment�(T> Λ QCD )�+coherent�oscillations�around�� minimum�(T<� Λ QCD )�: ������ if�no�inflation�after�PQ�phase�trans. : ������� (flat�dist. → < θ 2 >= π 2 /3) → → � � ��� ��� �� → → otherwise:�smaller�m a possible (0.3�<�k a� <a�few) [Tegmark,Aguirre,�Rees.�Wilczek] 2) axion strings�(T R >f a )� 3)�thermal�(m a >10 D3 eV,�subdominant) TAUP 2007, Sendai, September 11- TAUP 2007, Sendai, September 11 -15 2007 15 2007 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 - - 15 2007 15 2007

  10. Experimental�limits: use�data�from� WIMP�searches! (DAMA,�SOLAX,�COSME) (but�sensitivity� improves�as� (MT) 1/8 ) ADMX,� KYOTO g a γγ a γ g a γγ from�theory�&�uncertainty�in�the�masses�of�light�quarks, (Buckley,Murayama,�arXiv:0705.0542) B TAUP 2007, Sendai, September 11- TAUP 2007, Sendai, September 11 -15 2007 15 2007 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 - - 15 2007 15 2007

  11. most�popular�DM�candidates�from�particle�physics (solve�hierarchy�problem:�M W /M Pl ~�10 D16 ) DM� conserved� symmetry candidate χ ( neutralino)� •susy RDparity •extra�dimensions KDparity B (1) (KK�photon) •little�Higgs TDparity B H� (heavy�photon) all�thermal�candidates,�massive,�with�weakDtype� interactions�(WIMPs) TAUP 2007, Sendai, September 11- TAUP 2007, Sendai, September 11 -15 2007 15 2007 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 - - 15 2007 15 2007

  12. the�thermal�cosmological�density�of�a�WIMP�X Ω X h 2 ~ 1/<σ ann v> int x 0 <σ ann v> int = ∫<σ ann v>dx x f x 0 =M/T 0 T 0 =present (CMB) temperature x f =M/T f T f =freeze-out temperature X f >>1, X non relativistic at decoupling, low temp expansion for <σ ann v>: <σ ann v>~a+b/x if�σ ann is�given�by�weakDtype�interactions� → B X ~0.1D1 …+�cohannihilations with�other�particle(s) close�in�mass�+�resonant�annihilations TAUP 2007, Sendai, September 11- TAUP 2007, Sendai, September 11 -15 2007 15 2007 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 - - 15 2007 15 2007

  13. WIMP direct�detection � Elastic�recoil�of�non�relativistic�halo�WIMPs�off�the� nuclei�of�an�underground�detector � Recoil�energy�of�the�nucleus�in�the�keV�range � Yearly�modulation�effect�due�to�the�rotation�of�the� Earth�around�the�Sun�(the�relative�velocity�between� the�halo,�usually�assumed�at�rest�in�the�Galactic� system,�and�the�detector�changes�during�the�year) TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11- -15 2007 15 2007 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 - - 15 2007 15 2007

  14. WIMP�differential�detection�rate E R =nuclear�energy N T =#�of�nuclear�targets v=WIMP�velocity�in�the�Earth’s�rest�frame Astrophysics •ρ χ =WIMP�local�density •f(v)=�WIMP�velocity�distribution�function Particle�and�nuclear�physics • =WIMPDnucleus�elastic�cross�section usually�dominates,� α (atomic�number) 2 TAUP 2007, Sendai, September 11- TAUP 2007, Sendai, September 11 -15 2007 15 2007 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 - - 15 2007 15 2007

  15. Different�halo�models�are�possible Interaction�on�NaI [Belli,�Cerulli,�Fornengo,�Scopel] timeDindependent part modulation�amplitude sizeable�variation�of�the�local�density:�0.17�<�ρ <�1.7 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11- -15 2007 15 2007 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 - - 15 2007 15 2007

  16. TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11- -15 2007 15 2007 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 - - 15 2007 15 2007

  17. B (1) relic�abundance [Servant,Tait,�NPB650,391;New�J.�Phys.�4,99;�Kakizai &�al.,�PRD71,123522;�Kong,� Matchev,�JHEP0601,038] • coannihilations (many�modes�with�similar�masses)� • resonances�(M NLKP ~�2�x�M LKP ) •general�rule�of�coannihilation: smaller faster if�cohannihilating particle�annihilates���������������than�LKP → relic�abundance��� slower larger both�cases�are�possible�:�KK�quarks�and�gluons�vs.�KK�leptons B B� (1) h 2 =0.1 KK�leptons b≡fractional�mass�splitting TAUP 2007, Sendai, September 11- TAUP 2007, Sendai, September 11 -15 2007 15 2007 TAUP 2007, Sendai, September 11 TAUP 2007, Sendai, September 11 - - 15 2007 15 2007

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend