current developments on computational modeling using p
play

Current developments on computational modeling using P systems - PowerPoint PPT Presentation

Current developments on computational modeling using P systems Agustn Riscos-Nez Research Group on Natural Computing Department of Computer Science and Artificial Intelligence University of Seville CiE 2011 - Natural Computing Session


  1. Current developments on computational modeling using P systems Agustín Riscos-Núñez Research Group on Natural Computing Department of Computer Science and Artificial Intelligence University of Seville CiE 2011 - Natural Computing Session June 27- July 2, Sofia, Bulgary A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 1 / 50

  2. Introduction 1 P systems Modeling framework A P system based modeling framework 2 Example: Tritrophic Interactions 3 A software framework for Membrane Computing 4 Simulation algorithms Simulation results 5 Conclusions and future work A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 2 / 50

  3. Introduction 1 P systems Modeling framework A P system based modeling framework 2 Example: Tritrophic Interactions 3 A software framework for Membrane Computing 4 Simulation algorithms Simulation results 5 Conclusions and future work A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 3 / 50

  4. Membrane Computing Multisets of objects Membranes (regions) Rules Objects Membranes Environment Figure: A P system A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 4 / 50

  5. Membrane Computing Machine oriented model. Non-deterministic devices. Two levels of parallelism (objects & membranes). Global clock. Figure: A P system A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 4 / 50

  6. Diversity of definitions Membranes tree-like / tissue-like structure labels, charges, . . . Rules restricting their type (e.g. forbidding dissolution, using only communication, . . . ) controlling applicability (e.g. priorities, alternatives to maximal parallelism, . . . ) A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 5 / 50

  7. Diversity of definitions Membranes tree-like / tissue-like structure labels, charges, . . . Rules restricting their type (e.g. forbidding dissolution, using only communication, . . . ) controlling applicability (e.g. priorities, alternatives to maximal parallelism, . . . ) A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 5 / 50

  8. Diversity of interpretations Generative devices: fixed initial configuration, we collect the outputs of all the non-deterministic computations. Computing devices: given an input (encoded somehow), compute the resulting output multiset. Decision tools: special objects yes and no , s.t. their presence / absence in the output decides whether the given input was accepted by the P system or not. Simulation tools: no halting configuration, the output is the computation. A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 6 / 50

  9. Diversity of interpretations Generative devices: fixed initial configuration, we collect the outputs of all the non-deterministic computations. Computing devices: given an input (encoded somehow), compute the resulting output multiset. Decision tools: special objects yes and no , s.t. their presence / absence in the output decides whether the given input was accepted by the P system or not. Simulation tools: no halting configuration, the output is the computation. A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 6 / 50

  10. Diversity of interpretations Generative devices: fixed initial configuration, we collect the outputs of all the non-deterministic computations. Computing devices: given an input (encoded somehow), compute the resulting output multiset. Decision tools: special objects yes and no , s.t. their presence / absence in the output decides whether the given input was accepted by the P system or not. Simulation tools: no halting configuration, the output is the computation. A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 6 / 50

  11. Diversity of interpretations Generative devices: fixed initial configuration, we collect the outputs of all the non-deterministic computations. Computing devices: given an input (encoded somehow), compute the resulting output multiset. Decision tools: special objects yes and no , s.t. their presence / absence in the output decides whether the given input was accepted by the P system or not. Simulation tools: no halting configuration, the output is the computation. A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 6 / 50

  12. Membrane computing New modeling framework P Systems based modeling framework Ecosystems Other bioprocesses (e.g. at cellular level) Randomness → probabilistic/stochastic strategies Simulation algorithms Reproduce the behaviour of the models Validation Virtual experimentation Software Implements the algorithms GUI for the end-user A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 7 / 50

  13. Modeling ecosystems Validation process REAL-LIFE PROCESS DATA (e.g. an ecosystem) Compare results Carrying out studies/experimets Inspiration Inspiration Run virtual experiments VALIDATED VALIDATION MODEL MODEL Success Fail Simulator A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 8 / 50

  14. Modeling ecosystems Virtual Experiments Check results Suggest Expert virtual experiments Run virtual experiments SELECTED VALIDATED REAL HYPOTHESES FILTER HYPOTHESES EXPERIMENTS MODEL Simulator NEW KNOWLEDGE A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 9 / 50

  15. Modeling ecosystems Desirable properties of a model Relevant Readable Extensible Computationallly tractable P systems fulfill the requirements A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 10 / 50

  16. Modeling ecosystems Desirable properties of a model Relevant Readable Extensible Computationallly tractable P systems fulfill the requirements A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 10 / 50

  17. Modeling real-life ecosystems Some studies within the RGNC Modeling Ecosystems using P systems: The Bearded Vulture, a case study . Cardona et al. LNCS , 5391, 137–156, (2009). P System Based Model of an Ecosystem of the Scavenger Birds . Cardona et al. LNCS , 5957, 182–195, (2010). A Computational Modeling for real Ecosystems based on P systems . Cardona et al. Natural Computing , 10, 39–53 (2011). A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 11 / 50

  18. Introduction 1 P systems Modeling framework A P system based modeling framework 2 Example: Tritrophic Interactions 3 A software framework for Membrane Computing 4 Simulation algorithms Simulation results 5 Conclusions and future work A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 12 / 50

  19. Need to define a new variant of P Systems Cooperation Randomness Communication between environments Membrane polarization A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 13 / 50

  20. A P system based modeling framework A skeleton of an extended P system with active membranes of degree q ≥ 1, (Γ , µ, R ) A probabilistic functional extended P system with active membranes of degree q ≥ 1, taking T time units, Π = (Γ , µ, R , T , { f r : r ∈ R } , M 0 , . . . , M q − 1 ) A multienvironment probabilistic functional extended P system with active membranes of degree ( m , q ) taking T time units, (Σ , G , R E , Γ , µ, R , T , { f rj : r ∈ R Π , 1 ≤ j ≤ m } , M ij : 0 ≤ i ≤ q − 1 , 1 ≤ j ≤ m ) A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 14 / 50

  21. A P system based modeling framework Skeleton rules → u ′ [ v ′ ] β fr u [ v ] α − h h e 1 e 2 Environment rules fr ( a ) e j − → ( b ) e k e 3 e 4 A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 15 / 50

  22. Introduction 1 P systems Modeling framework A P system based modeling framework 2 Example: Tritrophic Interactions 3 A software framework for Membrane Computing 4 Simulation algorithms Simulation results 5 Conclusions and future work A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 16 / 50

  23. Example: Tritrophic Interactions Simplification of a real ecosystem Three trophic levels (3) A Carnivore (2) Herbivores (1) Grass A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 17 / 50

  24. Tritrophic Interactions The model consists of 5 modules Reproduction + Grass production 1 Feeding / Hunting + Natural mortality 2 Lack of food: migration 3 Feeding 4 Restore Initial Config. 5 represents a one-year cycle several computation steps per module 10 geographical areas A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 18 / 50

  25. Tritrophic Interactions Reproduction + Grass production Grass production mj r 1 , j ≡ X 1 [ ] 0 → [ X 1 , G h j ] + − − − 1 , 1 ≤ j ≤ 3 1 Females which reproduce and generate d i offsprings. ki , 1 · 0 . 5 → [ X 1 + d i ] + r 2 , i ≡ [ X i ] 0 − − − 1 , 2 ≤ i ≤ 7 1 i . . . A. Riscos-Núñez (Univ. Seville) Computational modeling using P systems CiE 2011 19 / 50

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend