convex regularization of discrete valued inverse problems
play

Convex regularization of discrete-valued inverse problems Christian - PowerPoint PPT Presentation

Convex regularization of discrete-valued inverse problems Christian Clason Faculty of Mathematics, Universitt Duisburg-Essen joint work with Thi Bich Tram Do, Florian Kruse, Karl Kunisch New Trends in Parameter Identification for Mathematical


  1. Convex regularization of discrete-valued inverse problems Christian Clason Faculty of Mathematics, Universität Duisburg-Essen joint work with Thi Bich Tram Do, Florian Kruse, Karl Kunisch New Trends in Parameter Identification for Mathematical Models IMPA, Rio de Janeiro, October 31, 2017 Overview Approach Multi-bang regularization Nonlinear problems 1 / 32

  2. Motivation: hybrid discrete optimization u ∈ U F ( u ) + α 2 � u � 2 min F discrepancy term (involving PDEs) U discrete set � � u ∈ L p (Ω) : u ( x ) ∈ { u 1 , . . . , u d } a.e. U = u 1 , . . . , u d given voltages, velocities, materials, ... (assumed here: ranking by magnitude possible!) motivation: topology optimization, medical imaging Overview Approach Multi-bang regularization Nonlinear problems 2 / 32

  3. Motivation: penalty convex relaxation: replace U by convex hull u ( x ) ∈ [ u 1 , u d ] works only for d = 2, cf. bang-bang control ( α = 0) � promote u ( x ) ∈ { u 1 , . . . , u d } by convex pointwise penalty � G ( u ) = g ( u ( x )) dx Ω generalize L 1 norm: polyhedral epigraph with vertices u 1 , . . . , u d not exact relaxation/penalization (in general)! Overview Approach Multi-bang regularization Nonlinear problems 3 / 32

  4. Motivation: penalty generalize L 1 norm: polyhedral epigraph with vertices u 1 , . . . , u d 3 motivation: convex envelope 2 � u � 2 + δ U of 1 2 multi-bang (generalized bang-bang) control 1 � non-smooth optimization 0 in function spaces v u 1 u 2 u 3 Overview Approach Multi-bang regularization Nonlinear problems 3 / 32

  5. Overview 1 Approach 2 Convex analysis Moreau–Yosida regularization Semismooth Newton method Multi-bang penalty 3 Multi-bang regularization Regularization properties Structure and numerical solution Nonlinear problems 4 Overview Approach Multi-bang regularization Nonlinear problems 4 / 32

  6. Fenchel duality V Banach space, V ∗ dual space F : V → R := R ∪ {+ ∞ } convex, subdifferential � � v ∗ ∈ V ∗ : � v ∗ , v – ¯ ∂ F (¯ v ) = v � V ∗ , V � F ( v ) – F (¯ v ) for all v ∈ V Fenchel conjugate (always convex) F ∗ : V ∗ → R , F ∗ ( v ∗ ) = sup � v ∗ , v � V ∗ , V – F ( v ) v ∈ V “convex inverse function theorem”: v ∗ ∈ ∂ F ( v ) v ∈ ∂ F ∗ ( v ∗ ) ⇔ Overview Approach Multi-bang regularization Nonlinear problems 5 / 32

  7. Fenchel duality: application F (¯ u ) + G (¯ u ) = min u F ( u ) + G ( u ) 1 Fermat principle: 0 ∈ ∂ ( F (¯ u ) + G (¯ u )) p ∈ V ∗ with 2 sum rule: 0 ∈ ∂ F (¯ u ) + ∂ G (¯ u ), i.e., there is ¯ � –¯ p ∈ ∂ F (¯ u ) p ∈ ∂ G (¯ ¯ u ) 3 Fenchel duality: � –¯ p ∈ ∂ F (¯ u ) u ∈ ∂ G ∗ (¯ ¯ p ) Overview Approach Multi-bang regularization Nonlinear problems 6 / 32

  8. Regularization G non-smooth � subdifferential ∂ G ∗ set-valued � regularize u , p ∈ L 2 (Ω) Hilbert space � consider for γ > 0 Proximal mapping w G ∗ ( w ) + 1 2 γ � w – p � 2 prox γ G ∗ ( p ) = arg min single-valued, Lipschitz continuous coincides with resolvent (Id + γ ∂ G ∗ ) –1 ( p ) (also required for primal-dual first-order methods) Overview Approach Multi-bang regularization Nonlinear problems 7 / 32

  9. Regularization Proximal mapping w G ∗ ( w ) + 1 2 γ � w – p � 2 prox γ G ∗ ( p ) = arg min Complementarity formulation of u ∈ ∂ G ∗ ( p ) u = 1 � � ( p + γu ) – prox γ G ∗ ( p + γu ) γ equivalent for every γ > 0 single-valued, Lipschitz continuous, implicit Overview Approach Multi-bang regularization Nonlinear problems 7 / 32

  10. Regularization Proximal mapping w G ∗ ( w ) + 1 2 γ � w – p � 2 prox γ G ∗ ( p ) = arg min Moreau–Yosida regularization of u ∈ ∂ G ∗ ( p ) u = 1 =: ∂ G ∗ � � p – prox γ G ∗ ( p ) γ ( p ) γ 2 � · � 2 � ∗ → ∂ G ∗ as γ → 0 (no smoothing of G !) G + γ ∂ G ∗ � γ = ∂ single-valued, Lipschitz continuous, explicit � nonsmooth operator equation, Newton method Overview Approach Multi-bang regularization Nonlinear problems 7 / 32

  11. Semismooth Newton method f locally Lipschitz, piecewise C 1 : f : R n → R f ( v ) = 0, Newton derivative D N f ( v ) δv ∈ ∂ C f ( v ) δv Clarke generalized gradient: convex hull of piecewise derivatives semismooth Newton method v k +1 = v k + δv D N f ( v k ) δv = – f ( v k ), converges locally superlinearly Overview Approach Multi-bang regularization Nonlinear problems 8 / 32

  12. Semismooth Newton method f locally Lipschitz, piecewise C 1 : F : L r (Ω) → L s (Ω), F ( u ) = 0, [ F ( u )]( x ) = f ( u ( x )) Newton derivative [ D N F ( u ) δu ]( x ) ∈ ∂ C f ( δu ( x )) δu ( x ) any measurable selection of Clarke generalized gradient semismooth Newton method u k +1 = u k + δu D N F ( u k ) δu = – F ( u k ), converges locally superlinearly if r > s Overview Approach Multi-bang regularization Nonlinear problems 8 / 32

  13. Numerical solution: summary � For (non)convex G : L 2 (Ω) → R , G ( u ) = Ω g ( u ( x )) dx , Approach: pointwise 1 compute subdifferential ∂ g (or Fenchel conjugate g ∗ ) 2 compute subdifferential ∂ g ∗ 3 compute proximal mapping prox γ g ∗ 4 compute Moreau–Yosida regularization ∂ g ∗ γ 5 compute Newton derivative D N ∂ g ∗ γ � semismooth Newton method, continuation in γ for [ ∂ G ∗ γ ( p )]( x ) = ∂ g ∗ superposition operator γ ( p ( x )) Overview Approach Multi-bang regularization Nonlinear problems 9 / 32

  14. Multi-bang penalty � 1 2 (( u i + u i +1 ) v – u i u i +1 ) v ∈ [ u i , u i +1 ] g : R → R , v �→ else ∞ piecewise differentiable � subdifferential convex hull of derivatives  – ∞ , 1 � � 2 ( u 1 + u 2 ) v = u 1    � 1 �   2 ( u i + u i +1 ) v ∈ ( u i , u i +1 ) 1 � i < d ∂ g ( v ) = � 1 2 ( u i –1 + u i ), 1 � 2 ( u i + u i +1 ) v = u i 1 < i < d    � 1   � 2 ( u d –1 + u d ), ∞ v = u d Overview Approach Multi-bang regularization Nonlinear problems 10 / 32

  15. Multi-bang penalty  – ∞ , 1 � � 2 ( u 1 + u 2 ) v = u 1    � 1 �   2 ( u i + u i +1 ) v ∈ ( u i , u i +1 ) 1 � i < d ∂ g ( v ) = � 1 2 ( u i –1 + u i ), 1 � 2 ( u i + u i +1 ) v = u i 1 < i < d    � 1   � 2 ( u d –1 + u d ), ∞ v = u d convex inverse function theorem:  – ∞ , 1 � � { u 1 } q ∈ 2 ( u 1 + u 2 )      q = 1 [ u i , u i +1 ] 2 ( u i + u i +1 ), 1 � i < d ∂ g ∗ ( q ) ∈ � 1 2 ( u i –1 + u i ), 1 � { u i } q ∈ 2 ( u i + u i +1 ) 1 < i < d ,    � 1   � { u d } q ∈ 2 ( u d –1 + u d ), ∞ Overview Approach Multi-bang regularization Nonlinear problems 10 / 32

  16. Multi-bang penalty: sketch 3 3 2 2 1 1 0 0 v v u 1 u 2 u 3 u 1 u 2 u 3 (a) g ( u 1 = 0, u 2 = 1, u 3 = 2) (b) ∂ g ( u 1 = 0, u 2 = 1, u 3 = 2) Overview Approach Multi-bang regularization Nonlinear problems 11 / 32

  17. Multi-bang penalty: sketch 3 2 2 1 1 0 0 v q u 1 u 2 u 3 0.5 1.5 (d) ∂ g ∗ ( u 1 = 0, u 2 = 1, u 3 = 2) (c) ∂ g ( u 1 = 0, u 2 = 1, u 3 = 2) Overview Approach Multi-bang regularization Nonlinear problems 11 / 32

  18. Moreau–Yosida regularization prox γ g ∗ ( q ) = w iff q ∈ { w } + γ ∂ g ∗ ( w ) Proximal mapping case-wise inspection of subdifferential: � q ∈ Q γ u i γ ( q ) = 1 ∂ g ∗ i � � q – prox γ g ∗ ( q ) = 1 q – 1 q ∈ Q γ � � γ 2 ( u i + u i +1 ) i , i +1 γ � � Q γ 2 ( u i –1 + u i ) + γ u i , 1 1 i = 2 ( u i + u i +1 ) + γ u i � � Q γ 2 ( u i + u i +1 ) + γ u i , 1 1 i , i +1 = 2 ( u i + u i +1 ) + γ u i +1 Overview Approach Multi-bang regularization Nonlinear problems 12 / 32

  19. Overview 1 Approach 2 Convex analysis Moreau–Yosida regularization Semismooth Newton method Multi-bang penalty 3 Multi-bang regularization Regularization properties Structure and numerical solution Nonlinear problems 4 Overview Approach Multi-bang regularization Nonlinear problems 13 / 32

  20. Multi-bang regularization 1 2 � Ku – y δ � 2 min Y + α G ( u ) u ∈ L 2 (Ω) K : L 2 (Ω) → Y (linear) forward mapping, weakly closed y δ ∈ L 2 (Ω) noisy data with � y – y δ � Y � δ u 1 < · · · < u d given parameter values ( d > 2) G multi-bang penalty Overview Approach Multi-bang regularization Nonlinear problems 14 / 32

  21. Multi-bang regularization 1 2 � Ku – y δ � 2 min Y + α G ( u ) u ∈ L 2 (Ω) G multi-bang penalty convex: existence of solution u δ α for every α > 0 1 δ → 0 implies u δ α ⇀ u α for every α > 0 2 δ → 0, α → 0, δα –2 → 0 implies u δ α ⇀ u † 3 (standard arguments, e.g. [Burger/Osher 04, Ito/Jin 14] ) Overview Approach Multi-bang regularization Nonlinear problems 14 / 32

  22. Multi-bang regularization 1 2 � Ku – y δ � 2 min Y + α G ( u ) u ∈ L 2 (Ω) p † := K ∗ w ∈ ∂ G ( u † ) for w ∈ Y , standard source condition: a priori choice α ( δ ) = cδ 1 � Ku δ α ( δ ) – y δ � Y � τδ , τ > 1 a posteriori choice 2 � convergence rate d p † G ( u δ α , u † ) � C δ in Bregman distance d p 1 G ( u 2 , u 1 ) = G ( u 2 ) – G ( u 1 ) – � p 1 , u 2 – u 1 � X , p 1 ∈ ∂ G ( u 1 ) Overview Approach Multi-bang regularization Nonlinear problems 14 / 32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend