convex optimization examples
play

Convex optimization examples multi-period processor speed scheduling - PowerPoint PPT Presentation

Convex optimization examples multi-period processor speed scheduling minimum time optimal control grasp force optimization optimal broadcast transmitter power allocation phased-array antenna beamforming optimal receiver


  1. Convex optimization examples • multi-period processor speed scheduling • minimum time optimal control • grasp force optimization • optimal broadcast transmitter power allocation • phased-array antenna beamforming • optimal receiver location 1

  2. Multi-period processor speed scheduling • processor adjusts its speed s t ∈ [ s min , s max ] in each of T time periods • energy consumed in period t is φ ( s t ) ; total energy is E = � T t =1 φ ( s t ) • n jobs – job i available at t = A i ; must finish by deadline t = D i – job i requires total work W i ≥ 0 • θ ti ≥ 0 is fraction of processor effort allocated to job i in period t D i � 1 T θ t = 1 , θ ti s t ≥ W i t = A i • choose speeds s t and allocations θ ti to minimize total energy E 2

  3. Minimum energy processor speed scheduling • work with variables S ti = θ ti s t D i n � � s t = S ti , S ti ≥ W i i =1 t = A i • solve convex problem E = � T minimize t =1 φ ( s t ) s min ≤ s t ≤ s max , subject to t = 1 , . . . , T s t = � n i =1 S ti , t = 1 , . . . , T � D i t = A i S ti ≥ W i , i = 1 , . . . , n • a convex problem when φ is convex • can recover θ ⋆ t as θ ⋆ ti = (1 /s ⋆ t ) S ⋆ ti 3

  4. Example • T = 16 periods, n = 12 jobs • s min = 1 , s max = 6 , φ ( s t ) = s 2 t • jobs shown as bars over [ A i , D i ] with area ∝ W i 40 12 35 10 30 25 8 φ ( s t ) job i 20 6 15 4 10 2 5 0 0 0 1 2 3 4 5 6 7 0 2 4 6 8 10 12 14 16 18 s t t 4

  5. Optimal and uniform schedules • uniform schedule: S ti = W i / ( D i − A i + 1) ; gives E unif = 204 . 3 ti ; gives E ⋆ = 167 . 1 • optimal schedule: S ⋆ optimal uniform 6 6 5 5 4 4 s t s t 3 3 2 2 1 1 0 0 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 t t 5

  6. Minimum-time optimal control • linear dynamical system: x 0 = x init x t +1 = Ax t + Bu t , t = 0 , 1 , . . . , K, • inputs constraints: u min � u t � u max , t = 0 , 1 , . . . , K • minimum time to reach state x des : f ( u 0 , . . . , u K ) = min { T | x t = x des for T ≤ t ≤ K + 1 } 6

  7. state transfer time f is quasiconvex function of ( u 0 , . . . , u K ) : f ( u 0 , u 1 , . . . , u K ) ≤ T if and only if for all t = T, . . . , K + 1 x t = A t x init + A t − 1 Bu 0 + · · · + Bu t − 1 = x des i.e. , sublevel sets are affine minimum-time optimal control problem: minimize f ( u 0 , u 1 , . . . , u K ) subject to u min � u t � u max , t = 0 , . . . , K with variables u 0 , . . . , u K a quasiconvex problem; can be solved via bisection 7

  8. Minimum-time control example u 1 u 2 • force ( u t ) 1 moves object modeled as 3 masses (2 vibration modes) • force ( u t ) 2 used for active vibration suppression • goal: move object to commanded position as quickly as possible, with | ( u t ) 1 | ≤ 1 , | ( u t ) 2 | ≤ 0 . 1 , t = 0 , . . . , K 8

  9. Ignoring vibration modes • treat object as single mass; apply only u 1 • analytical (‘bang-bang’) solution 3 1 0.5 ( u t ) 1 2.5 0 −0.5 2 −1 ( x t ) 3 −2 0 2 4 6 8 10 12 14 16 18 20 t 1.5 0.1 1 ( u t ) 2 0.05 0 0.5 −0.05 −0.1 0 −2 0 2 4 6 8 10 12 14 16 18 20 −2 0 2 4 6 8 10 12 14 16 18 20 t t 9

  10. With vibration modes • no analytical solution • a quasiconvex problem; solved using bisection 3 1 ( u t ) 1 0.5 2.5 0 −0.5 2 −1 ( x t ) 3 −2 0 2 4 6 8 10 12 14 16 18 20 t 1.5 0.1 1 0.05 ( u t ) 2 0 0.5 −0.05 −0.1 0 −2 0 2 4 6 8 10 12 14 16 18 20 −2 0 2 4 6 8 10 12 14 16 18 20 t t 10

  11. Grasp force optimization • choose K grasping forces on object – resist external wrench – respect friction cone constraints – minimize maximum grasp force • convex problem (second-order cone program): max i � f ( i ) � 2 minimize max contact force i Q ( i ) f ( i ) = f ext subject to � force equillibrium i p ( i ) × ( Q ( i ) f ( i ) ) = τ ext � torque equillibrium � 1 / 2 � µ i f ( i ) f ( i )2 + f ( i )2 ≥ friction cone constraints 3 1 2 variables f ( i ) ∈ R 3 , i = 1 , . . . , K (contact forces) 11

  12. Example 12

  13. Optimal broadcast transmitter power allocation • m transmitters, mn receivers all at same frequency • transmitter i wants to transmit to n receivers labeled ( i, j ) , j = 1 , . . . , n • A ijk is path gain from transmitter k to receiver ( i, j ) • N ij is (self) noise power of receiver ( i, j ) • variables: transmitter powers p k , k = 1 , . . . , m transmitter k receiver ( i, j ) transmitter i 13

  14. at receiver ( i, j ) : • signal power: S ij = A iji p i • noise plus interference power: � I ij = A ijk p k + N ij k � = i • signal to interference/noise ratio (SINR): S ij /I ij problem: choose p i to maximize smallest SINR: A iji p i maximize min � k � = i A ijk p k + N ij i,j subject to 0 ≤ p i ≤ p max . . . a (generalized) linear fractional program 14

  15. Phased-array antenna beamforming ( x i , y i ) θ • omnidirectional antenna elements at positions ( x 1 , y 1 ) , . . . , ( x n , y n ) • unit plane wave incident from angle θ induces in i th element a signal e j ( x i cos θ + y i sin θ − ωt ) ( j = √− 1 , frequency ω , wavelength 2 π ) 15

  16. • demodulate to get output e j ( x i cos θ + y i sin θ ) ∈ C • linearly combine with complex weights w i : n � w i e j ( x i cos θ + y i sin θ ) y ( θ ) = i =1 • y ( θ ) is (complex) antenna array gain pattern • | y ( θ ) | gives sensitivity of array as function of incident angle θ • depends on design variables Re w , Im w (called antenna array weights or shading coefficients ) design problem: choose w to achieve desired gain pattern 16

  17. Sidelobe level minimization make | y ( θ ) | small for | θ − θ tar | > α ( θ tar : target direction; 2 α : beamwidth) via least-squares (discretize angles) i | y ( θ i ) | 2 � minimize subject to y ( θ tar ) = 1 (sum is over angles outside beam) least-squares problem with two (real) linear equality constraints 17

  18. 50 ◦ | y ( θ ) | ❅ θ tar = 30 ◦ ❅ ❅ ❘ 10 ◦ sidelobe level ❅ ❅ ❘ 18

  19. minimize sidelobe level (discretize angles) minimize max i | y ( θ i ) | subject to y ( θ tar ) = 1 (max over angles outside beam) can be cast as SOCP minimize t subject to | y ( θ i ) | ≤ t y ( θ tar ) = 1 19

  20. 50 ◦ | y ( θ ) | ❅ θ tar = 30 ◦ ❅ ❅ ❘ 10 ◦ sidelobe level ❅ ❅ ❘ 20

  21. Extensions convex (& quasiconvex) extensions: • y ( θ 0 ) = 0 (null in direction θ 0 ) • w is real (amplitude only shading) • | w i | ≤ 1 (attenuation only shading) i =1 | w i | 2 (thermal noise power in y ) • minimize σ 2 � n • minimize beamwidth given a maximum sidelobe level nonconvex extension: • maximize number of zero weights 21

  22. Optimal receiver location • N transmitter frequencies 1 , . . . , N • transmitters at locations a i , b i ∈ R 2 use frequency i • transmitters at a 1 , a 2 , . . . , a N are the wanted ones • transmitters at b 1 , b 2 , . . . , b N are interfering • receiver at position x ∈ R 2 q b 3 a 3 ❛ a 2 q b 2 ❛ x a 1 ❛ q b 1 22

  23. • (signal) receiver power from a i : � x − a i � − α ( α ≈ 2 . 1 ) 2 • (interfering) receiver power from b i : � x − b i � − α ( α ≈ 2 . 1 ) 2 • worst signal to interference ratio, over all frequencies, is � x − a i � − α 2 S / I = min � x − b i � − α i 2 • what receiver location x maximizes S / I? 23

  24. S/I is quasiconcave on { x | S/I ≥ 1 } , i.e. , on { x | � x − a i � 2 ≤ � x − b i � 2 , i = 1 , . . . , N } q b 3 a 3 ❛ q b 2 a 2 ❛ a 1 ❛ q b 1 can use bisection; every iteration is a convex quadratic feasibility problem 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend