convex language semantics for nondeterministic
play

Convex Language Semantics for Nondeterministic Probabilistic - PowerPoint PPT Presentation

Convex Language Semantics for Nondeterministic Probabilistic Automata Gerco van Heerdt 1 Justin Hsu 1,2,3 el Ouaknine 4 Alexandra Silva 1 Jo 1 University College London 2 Cornell University 3 University of WisconsinMadison 4 MPI-SWS and


  1. Convex Language Semantics for Nondeterministic Probabilistic Automata Gerco van Heerdt 1 Justin Hsu 1,2,3 el Ouaknine 4 Alexandra Silva 1 Jo¨ 1 University College London 2 Cornell University 3 University of Wisconsin–Madison 4 MPI-SWS and Oxford University October 19, 2018 1 / 17

  2. Deterministic probabilistic automaton 1 will get home 2 1 2 sleep taste taste 2 / 17

  3. Deterministic probabilistic automaton 1 will get home 2 1 2 sleep 1 0 taste taste � n � 1 Expected value after n wine tastings is 2 2 / 17

  4. � Deterministic probabilistic automaton Given a finite alphabet A , a probabilistic automaton is a function Q with an initial state distribution [0 , 1] × ( D Q ) A Language of type A ∗ → [0 , 1] defined by determinization 3 / 17

  5. � � � � Determinization NFAs: Q P Q ⇒ 2 × ( P Q ) A 2 × ( P Q ) A Probabilistic automata: D Q Q ⇒ [0 , 1] × ( D Q ) A [0 , 1] × ( D Q ) A Crucial: P and D are monads for which 2 and [0 , 1] are algebras 4 / 17

  6. D -semantics: transitions State space D Q Transition D Q → DD Q ⇒ flatten with monad multiplication q 0 1 taste q 0 2 1 2 2 q 0 + 1 1 q 1 2 q 1 taste taste 1 4 q 0 + 3 taste 4 q 1 taste . . . 1 2 · ( 1 2 q 0 + 1 2 q 1 ) + 1 2 q 1 = 1 4 q 0 + 3 4 q 1 5 / 17

  7. D -semantics: outputs State space D Q Output D Q → D [0 , 1] → [0 , 1] D -algebra : expected value 1 q 0 1 taste q 0 2 1 1 2 2 q 0 + 1 1 q 1 2 q 1 1 0 2 taste taste 1 4 q 0 + 3 1 taste 4 q 1 4 taste . . . 1 4 · 1 + 3 4 · 0 = 1 4 6 / 17

  8. Nondeterministic probabilistic automaton 1 will get home 2 1 2 sleep 1 0 taste taste taste Expected value after n tastings is one of � 2 � 3 � n − 1 � n 1 , 1 � 1 � 1 � 1 � 1 2 , , , . . . , , 2 2 2 2 Which ones “make sense”? 7 / 17

  9. Main results Nondeterministic probabilistic automata have ◮ two natural (categorical) semantics ◮ more expressive power than deterministic ones ◮ undecidable equivalence problem 8 / 17

  10. � Nondeterministic probabilistic automaton A nondeterministic probabilistic automaton is a function Q with a set of initial state distributions [0 , 1] × ( PD Q ) A Language of type A ∗ → [0 , 1] But: PD is not a monad 9 / 17

  11. Convex powerset For a convex set X , P c X = convex subsets of X (finitely generated, nonempty) 10 / 17

  12. Convex powerset For a convex set X , P c X = convex subsets of X (finitely generated, nonempty) Convex algebra structure on these sets: pointwise pU + (1 − p ) V = { pu + (1 − p ) v | u ∈ U , v ∈ V } For example, in P c [0 , 1]: 0 . 3 · [0 . 1 , 0 . 5] + 0 . 7 · [0 . 2 , 1] = [0 . 17 , 0 . 85] 10 / 17

  13. Adjusted monad Gives a monad P c D Multiplication: P c DP c D X → P c P c D X → P c D X convex algebra structure on P c 11 / 17

  14. � � Two natural semantics P c D [0 , 1] Need: P c D -algebra on [0 , 1] P c E � [0 , 1] α Comes down to a P c -algebra α P c [0 , 1] 12 / 17

  15. � � Two natural semantics P c D [0 , 1] Need: P c D -algebra on [0 , 1] P c E � [0 , 1] α Comes down to a P c -algebra α P c [0 , 1] Claim: α ∈ { min , max } Proof outline: � P c [0 , 1] generated by { 0 } , { 1 } , [0 , 1] α determined by α ([0 , 1]) α ( { 0 } ) = 0, α ( { 1 } ) = 1 α ([0 , 1]) 2 = α ([0 , 1]) ⇓ α ([0 , 1]) = 0 or α ([0 , 1]) = 1 12 / 17

  16. Expressivity (min semantics) a , b q 1 0 a , b 1 2 1 a 2 1 1 2 a q 0 1 2 a , b 1 1 b q 2 q 3 Language: u �→ 2 − n , n = length of longest sequence of a ’s in u Not accepted by any WFA 13 / 17

  17. Undecidability of equivalence (min semantics) Threshold: given probabilistic automaton X and κ ∈ [0 , 1], is there u ∈ A ∗ such that L X ( u ) < κ ? A A κ κ X κ Y = Z = A A 14 / 17

  18. Approximate equivalence Given c ∈ [0 , 1) and l 1 , l 2 : A ∗ → [0 , 1], � c � | u | � d c ( l 1 , l 2 ) = | l 1 ( u ) − l 2 ( u ) | · | A | u ∈ A ∗ Given λ > 0 we can compute x such that | d c ( l 1 , l 2 ) − x | ≤ λ 15 / 17

  19. Note on singleton alphabets Expressivity and undecidability proofs do not extend to | A | = 1 Separate proofs using linear recurrence sequences Expressivity result still holds ◮ Proof uses Skolem–Mahler–Lech and Cayley–Hamilton Deciding equivalence is at least hard ◮ Reduction from Positivity to Threshold 16 / 17

  20. Conclusions Contributions ◮ Two natural semantics ◮ More expressivity ◮ Undecidability of equivalence Interplay of convex algebra, number theory, category theory Approximation techniques interesting for verification applications ◮ different metrics? 17 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend