constraining new physics with combined low and high
play

Constraining New Physics with Combined Low and High Energy - PowerPoint PPT Presentation

Introduction U ( 3 ) 5 Invariant Operators Comments On Non- U ( 3 ) 5 Invariant Operators Constraining New Physics with Combined Low and High Energy Observables A combined effective operator analysis of precision data James Jenkins Theoretical


  1. Introduction U ( 3 ) 5 Invariant Operators Comments On Non- U ( 3 ) 5 Invariant Operators Constraining New Physics with Combined Low and High Energy Observables A combined effective operator analysis of precision data James Jenkins Theoretical Division, T-2 Los Alamos National Laboratory 2009 Phenomenology Symposium, Madison, WI James Jenkins Low & High Energy Constraints

  2. Introduction U ( 3 ) 5 Invariant Operators Comments On Non- U ( 3 ) 5 Invariant Operators Outline Introduction 1 Operator Set Observables U ( 3 ) 5 Invariant Operators 2 Global Analysis Individual Operator Analysis Comments On Non- U ( 3 ) 5 Invariant Operators 3 James Jenkins Low & High Energy Constraints

  3. Introduction Operator Set U ( 3 ) 5 Invariant Operators Observables Comments On Non- U ( 3 ) 5 Invariant Operators Operator Set U ( 3 ) 5 Invariant Operators O WB = ( h † σ a h ) W a µν B µν , O h = | h † D µ h | 2 1 O s ( ℓγ µ ℓ )( ℓγ µ ℓ ) , O s ℓ q = ( ℓγ µ ℓ )( q γ µ q ) , O t ℓ q = ( ℓγ µ σ a ℓ )( q γ µ σ a q ) , ℓℓ = 2 O ℓ e = ( ℓγ µ ℓ )( e γ µ e ) , O qe = ( q γ µ q )( e γ µ e ) , O ℓ u = ( ℓγ µ ℓ )( u γ µ u ) , O ℓ d = ( ℓγ µ ℓ )( d γ µ d ) , 1 ( e γ µ e )( e γ µ e ) , O eu =( e γ µ e )( u γ µ u ) , O ed =( e γ µ e )( d γ µ d ) . O ee = 2 O s h ℓ = i ( h † D µ h )( ℓγ µ ℓ ) + h . c ., O t h ℓ = i ( h † D µ σ a h )( ℓγ µ σ a ℓ ) + h . c ., O s hq = i ( h † D µ h )( q γ µ q ) + h . c ., O t hq = i ( h † D µ σ a h )( q γ µ σ a q ) + h . c ., O hu = i ( h † D µ h )( u γ µ u ) + h . c ., O hd = i ( h † D µ h )( d γ µ d ) + h . c ., O he = i ( h † D µ h )( e γ µ e ) + h . c . O W = ǫ abc W a ν µ W b λ W c µ ν λ These interfere with dominant Standard Model processes James Jenkins Low & High Energy Constraints

  4. Introduction Operator Set U ( 3 ) 5 Invariant Operators Observables Comments On Non- U ( 3 ) 5 Invariant Operators Operator Anatomy Each operator is associated with a dimensionless coupling constant a i v 2 O i a i = v 2 × T flavor a , b ... Λ 2 i Operators will shift parameters ( α, M Z , G F ... ) and contribute to physical processes directly. Goal is to calculate corrections to observables (linear in a i ) and bound operators: Globally Using individual operators We Use v = 174 GeV James Jenkins Low & High Energy Constraints

  5. Introduction Operator Set U ( 3 ) 5 Invariant Operators Observables Comments On Non- U ( 3 ) 5 Invariant Operators Precision Observables Included Measurements Weak charge in Cs and Tl (Atomic Parity Violation) Neutrino Deep Inelastic Scattering (DIS) data (NuTeV) Z-Pole Observables LEP2 fermion pair production W pair production differential cross-sections W mass measurements From this, we create a χ 2 function quadratic in a i parameters. This contains 237 (generally correlated) terms! Our global analysis is extended from a Mathematica Notebook by Han & Skiba, 2005 James Jenkins Low & High Energy Constraints

  6. Introduction Operator Set U ( 3 ) 5 Invariant Operators Observables Comments On Non- U ( 3 ) 5 Invariant Operators Added low energy observable: ∆ CKM Consider the unitarity of the CKM matrix. We write: | V ud | 2 + | V us | 2 + | V ub | 2 ≡ 1 + ∆ CKM , where the deviation from unitarity receives contributions as � � ∆ CKM = 2 ( a hq 3 − a hl 3 ) − ( a lq 3 − a ll 3 ) . This is experimentally constrained to be ∆ CKM = ( − 2 ± 6 ) × 10 − 4 (Dominant Superallowed Modes) ∆ CKM constrains operators ℓℓ = 1 O s 2 ( ℓγ µ ℓ )( ℓγ µ ℓ ) , O t ℓ q = ( ℓγ µ σ a ℓ )( q γ µ σ a q ) , O t h ℓ = i ( h † D µ σ a h )( ℓγ µ σ a ℓ ) + hc ., O t hq = i ( h † D µ σ a h )( q γ µ σ a q ) + hc . James Jenkins Low & High Energy Constraints

  7. Introduction Global Analysis U ( 3 ) 5 Invariant Operators Individual Operator Analysis Comments On Non- U ( 3 ) 5 Invariant Operators Simple Error Propagation Maximum deviation of a quantity composed of n observables: n ∂ ∆ CKM ∂ ∆ CKM ( δ ∆ CKM )) 2 = � M ij δ a i δ a j . ∂ a i ∂ a j i , j Plugging in numbers from precision data yields δ ∆ CKM = 2 . 94 × 10 − 3 . This is 4 . 8 times larger than the experimentally extracted ∆ CKM uncertainty of 6 × 10 − 4 ! James Jenkins Low & High Energy Constraints

  8. Introduction Global Analysis U ( 3 ) 5 Invariant Operators Individual Operator Analysis Comments On Non- U ( 3 ) 5 Invariant Operators Allowed Contours Alternate value: ∆ CKM = − 0 . 0025 ± 0 . 0006 James Jenkins Low & High Energy Constraints

  9. Introduction Global Analysis U ( 3 ) 5 Invariant Operators Individual Operator Analysis Comments On Non- U ( 3 ) 5 Invariant Operators Pseudo-Pull Plot Contributions from various measurement types James Jenkins Low & High Energy Constraints

  10. Introduction Global Analysis U ( 3 ) 5 Invariant Operators Individual Operator Analysis Comments On Non- U ( 3 ) 5 Invariant Operators Observable Correlations Assuming the dominance of a single operator O i , we substitute a i for ∆ CKM using a i = ± 1 2 ∆ CKM This leads to direct correlations between any two observables! In particular, the χ 2 functions become simple quadratics: χ 2 O s O t O t O t Measurement ℓℓ ℓ q h ℓ SM hq 1 . 2 e 3 ∆ + 2 . 8 e 6 ∆ 2 1 . 2 e 3 ∆ + 2 . 8 e 6 ∆ 2 1 . 2 e 3 ∆ + 2 . 86 ∆ 2 1 . 2 e 3 ∆ + 2 . 8 e 6 ∆ 2 ∆ CKM 0.11 − 2 . 4 e 2 ∆ + 2 . 7 e 3 ∆ 2 − 4 . 7 e 2 ∆ + 1 . 1 e 5 ∆ 2 MW 0.65 − 2 . 2 e 1 ∆ + 6 . 8 e 4 ∆ 2 6 . 9 e 1 ∆ + 3 . 3 e 5 ∆ 2 1 . 5 e 2 ∆ + 2 . 2 e 5 ∆ 2 Zline 0.96 3 . 6 e 2 ∆ + 6 . 8 e 3 ∆ 2 4 . 7 e 2 ∆ + 8 . 1 e 3 ∆ 2 8 . 0 e 0 ∆ + 8 . 2 e 1 ∆ 2 bc 0.90 − 3 . 3 e 2 ∆ + 8 . 2 e 4 ∆ 2 − 4 . 3 e 2 ∆ + 1 . 4 e 5 ∆ 2 pol 0.98 2 . 1 e 2 ∆ + 1 . 8 e 4 ∆ 2 2 . 6 e 2 ∆ + 3 . 1 e 4 ∆ 2 QFB 0.57 9 . 1 e 1 ∆ + 1 . 9 e 3 ∆ 2 6 . 1 e 1 ∆ + 9 . 6 e 2 ∆ 2 1 . 9 e 2 ∆ + 8 . 2 e 3 ∆ 2 6 . 1 e 1 ∆ + 9 . 6 e 2 ∆ 2 DIS 1.27 1 . 3 e 0 ∆ + 1 . 8 e 0 ∆ 2 2 . 6 e 1 ∆ + 3 . 1 e 2 ∆ 2 − 7 . 9 e 1 ∆ + 2 . 9 e 3 ∆ 2 2 . 6 e 1 ∆ + 3 . 1 e 2 ∆ 2 QW 0.54 − 3 . 5 e 1 ∆ + 1 . 3 e 3 ∆ 2 1 . 2 e 2 ∆ + 1 . 6 e 4 ∆ 2 − 4 . 3 e 1 ∆ + 2 . 0 e 3 ∆ 2 − 2 . 2 e 1 ∆ + 5 . 4 e 2 ∆ 2 hadLEP 0.66 µ LEP 2 . 2 e 1 ∆ + 1 . 3 e 3 ∆ 2 1 . 1 e 0 ∆ + 5 . 4 e 0 ∆ 2 0.85 − 4 . 1 e − 1 ∆ + 8 . 2 e 2 ∆ 2 9 . 1 e − 3 ∆ + 3 . 3 e 0 ∆ 2 τ LEP 0.85 − 7 . 4 e − 1 ∆ + 2 . 4 e 1 ∆ 2 9 . 1 e − 1 ∆ + 1 . 9 e − 1 ∆ 2 eOPAL 0.77 7 . 2 e 0 ∆ + 1 . 3 e 2 ∆ 2 9 . 1 e − 1 ∆ + 6 . 8 e 0 ∆ 2 − 1 . 6 e 0 ∆ + 6 . 3 e 0 ∆ 2 WL3 1.09 7 . 4 e 0 ∆ + 1 . 8 e 4 ∆ 2 1 . 3 e 1 ∆ + 1 . 2 e 4 ∆ 2 7 . 8 e 0 ∆ + 3 . 0 e 4 ∆ 2 1 . 7 e 1 ∆ + 1 . 9 e 4 ∆ 2 tot 0.86 James Jenkins Low & High Energy Constraints

  11. Introduction Global Analysis U ( 3 ) 5 Invariant Operators Individual Operator Analysis Comments On Non- U ( 3 ) 5 Invariant Operators Individual Operator Constraints James Jenkins Low & High Energy Constraints

  12. Introduction Global Analysis U ( 3 ) 5 Invariant Operators Individual Operator Analysis Comments On Non- U ( 3 ) 5 Invariant Operators Individual Operator Constraints James Jenkins Low & High Energy Constraints

  13. Introduction Global Analysis U ( 3 ) 5 Invariant Operators Individual Operator Analysis Comments On Non- U ( 3 ) 5 Invariant Operators Z-Line Correlations (Light Fermions) James Jenkins Low & High Energy Constraints

  14. Introduction Global Analysis U ( 3 ) 5 Invariant Operators Individual Operator Analysis Comments On Non- U ( 3 ) 5 Invariant Operators Z-Pole Polarized Lepton Asymmetries James Jenkins Low & High Energy Constraints

  15. Introduction Global Analysis U ( 3 ) 5 Invariant Operators Individual Operator Analysis Comments On Non- U ( 3 ) 5 Invariant Operators Z-Pole Heavy Fermion Observables James Jenkins Low & High Energy Constraints

  16. Introduction Global Analysis U ( 3 ) 5 Invariant Operators Individual Operator Analysis Comments On Non- U ( 3 ) 5 Invariant Operators Other Correlations James Jenkins Low & High Energy Constraints

  17. Introduction Global Analysis U ( 3 ) 5 Invariant Operators Individual Operator Analysis Comments On Non- U ( 3 ) 5 Invariant Operators DIS Correlation (without NuTeV) James Jenkins Low & High Energy Constraints

  18. Introduction Global Analysis U ( 3 ) 5 Invariant Operators Individual Operator Analysis Comments On Non- U ( 3 ) 5 Invariant Operators The NuTeV Anomaly The Standard Model Lagrangian may be written as: √ � �� � L ¯ R ¯ g ν νγ µ P L ν + g ν g f f γ µ P L f + g f f γ µ P R f L = − 4 2 G F L ¯ R ¯ νγ µ P R ν . NuTeV constrains the coupling combinations L ) 2 + ( 2 g ν g 2 ( 2 g ν L g u L g d L ) 2 = L R ) 2 + ( 2 g ν g 2 ( 2 g ν L g u L g d R ) 2 = R They find g 2 L = 0 . 30005 ± 0 . 00137 ( EW Fit : 0 . 3042 ) g 2 R = 0 . 03076 ± 0 . 00011 ( EW Fit : 0 . 0301 ) Usually interpreted as a 3 σ deviation in sin 2 θ w James Jenkins Low & High Energy Constraints

  19. Introduction Global Analysis U ( 3 ) 5 Invariant Operators Individual Operator Analysis Comments On Non- U ( 3 ) 5 Invariant Operators NuTeV Correlations James Jenkins Low & High Energy Constraints

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend