conjunctive grammars over a unary alphabet
play

Conjunctive grammars over a unary alphabet Artur Je z, Alexander - PowerPoint PPT Presentation

Conjunctive grammars over a unary alphabet Artur Je z, Alexander Okhotin September 7, 2007 Artur Je z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 1 / 15 Conjunctive and Boolean grammars Context-free


  1. The case of a unary alphabet Σ = { a } . a n ← → number n Language ← → set of numbers K · L ← → X ⊞ Y = { x + y | x ∈ X , y ∈ Y } ← → Regular ultimately periodic Theorem (Bar-Hillel et al., 1961) Every context-free language over { a } is regular. Problem The power of conjunctive grammars over { a } ? Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 5 / 15

  2. The case of a unary alphabet Σ = { a } . a n ← → number n Language ← → set of numbers K · L ← → X ⊞ Y = { x + y | x ∈ X , y ∈ Y } ← → Regular ultimately periodic Theorem (Bar-Hillel et al., 1961) Every context-free language over { a } is regular. Problem The power of conjunctive grammars over { a } ? Can generate { a 4 n | n � 0 } (Je˙ z, 2007). Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 5 / 15

  3. Using positional notation Our approach: using base- k notation. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 6 / 15

  4. Using positional notation Our approach: using base- k notation. a n ← → k -ary notation of n Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 6 / 15

  5. Using positional notation Our approach: using base- k notation. a n ← → k -ary notation of n Σ k = { 0 , 1 , . . . , k − 1 } , strings in Σ ∗ k \ 0 Σ ∗ k . Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 6 / 15

  6. Using positional notation Our approach: using base- k notation. a n ← → k -ary notation of n Σ k = { 0 , 1 , . . . , k − 1 } , strings in Σ ∗ k \ 0 Σ ∗ k . Isomorphism Σ ∗ k \ 0 Σ ∗ k ↔ a ∗ . f k ( k-ary notation of n ) = a n Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 6 / 15

  7. Using positional notation Our approach: using base- k notation. a n ← → k -ary notation of n Σ k = { 0 , 1 , . . . , k − 1 } , strings in Σ ∗ k \ 0 Σ ∗ k . Isomorphism Σ ∗ k \ 0 Σ ∗ k ↔ a ∗ . f k ( k-ary notation of n ) = a n Extends to languages: f k ( L ) = { f k ( w ) | w ∈ L } Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 6 / 15

  8. Using positional notation Our approach: using base- k notation. a n ← → k -ary notation of n Σ k = { 0 , 1 , . . . , k − 1 } , strings in Σ ∗ k \ 0 Σ ∗ k . Isomorphism Σ ∗ k \ 0 Σ ∗ k ↔ a ∗ . f k ( k-ary notation of n ) = a n Extends to languages: f k ( L ) = { f k ( w ) | w ∈ L } Example f 4 ( 10 ∗ ) = { a 4 n | n � 0 } Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 6 / 15

  9. Using positional notation Our approach: using base- k notation. a n ← → k -ary notation of n Σ k = { 0 , 1 , . . . , k − 1 } , strings in Σ ∗ k \ 0 Σ ∗ k . Isomorphism Σ ∗ k \ 0 Σ ∗ k ↔ a ∗ . f k ( k-ary notation of n ) = a n Extends to languages: f k ( L ) = { f k ( w ) | w ∈ L } Example f 4 ( 10 ∗ ) = { a 4 n | n � 0 } Equations over Σ ∗ k with ∩ , ∪ , ⊞ Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 6 / 15

  10. Using positional notation Our approach: using base- k notation. a n ← → k -ary notation of n Σ k = { 0 , 1 , . . . , k − 1 } , strings in Σ ∗ k \ 0 Σ ∗ k . Isomorphism Σ ∗ k \ 0 Σ ∗ k ↔ a ∗ . f k ( k-ary notation of n ) = a n Extends to languages: f k ( L ) = { f k ( w ) | w ∈ L } Example f 4 ( 10 ∗ ) = { a 4 n | n � 0 } Equations over Σ ∗ k with ∩ , ∪ , ⊞ Isomorphism between language equations. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 6 / 15

  11. Nonperiodic unary conjunctive languages Example (Je˙ z, DLT 2007) a ∗ N Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 7 / 15

  12. Nonperiodic unary conjunctive languages Example (Je˙ z, DLT 2007) a ∗ N X 1 = ( X 2 ⊞ X 2 ∩ X 1 ⊞ X 3 ) ∪ { 1 } X 2 = ( X 12 ⊞ X 2 ∩ X 1 ⊞ X 1 ) ∪ { 2 } X 3 = ( X 12 ⊞ X 12 ∩ X 1 ⊞ X 2 ) ∪ { 3 } X 12 = X 3 ⊞ X 3 ∩ X 1 ⊞ X 2 Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 7 / 15

  13. Nonperiodic unary conjunctive languages Example (Je˙ z, DLT 2007) a ∗ N X 1 = ( X 2 ⊞ X 2 ∩ X 1 ⊞ X 3 ) ∪ { 1 } Y 1 = ( Y 2 Y 2 ∩ Y 1 Y 3 ) ∪ a X 2 = ( X 12 ⊞ X 2 ∩ X 1 ⊞ X 1 ) ∪ { 2 } Y 2 = ( Y 12 Y 2 ∩ Y 1 Y 1 ) ∪ aa X 3 = ( X 12 ⊞ X 12 ∩ X 1 ⊞ X 2 ) ∪ { 3 } Y 3 = ( Y 12 Y 12 ∩ Y 1 Y 2 ) ∪ aaa X 12 = X 3 ⊞ X 3 ∩ X 1 ⊞ X 2 Y 12 = ( Y 3 Y 3 ∩ Y 1 Y 2 ) Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 7 / 15

  14. Nonperiodic unary conjunctive languages Example (Je˙ z, DLT 2007) a ∗ N X 1 = ( X 2 ⊞ X 2 ∩ X 1 ⊞ X 3 ) ∪ { 1 } Y 1 = ( Y 2 Y 2 ∩ Y 1 Y 3 ) ∪ a X 2 = ( X 12 ⊞ X 2 ∩ X 1 ⊞ X 1 ) ∪ { 2 } Y 2 = ( Y 12 Y 2 ∩ Y 1 Y 1 ) ∪ aa X 3 = ( X 12 ⊞ X 12 ∩ X 1 ⊞ X 2 ) ∪ { 3 } Y 3 = ( Y 12 Y 12 ∩ Y 1 Y 2 ) ∪ aaa X 12 = X 3 ⊞ X 3 ∩ X 1 ⊞ X 2 Y 12 = ( Y 3 Y 3 ∩ Y 1 Y 2 ) base 4: ( 10 ∗ , 20 ∗ , 30 ∗ , 120 ∗ ) Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 7 / 15

  15. Nonperiodic unary conjunctive languages Example (Je˙ z, DLT 2007) a ∗ N X 1 = ( X 2 ⊞ X 2 ∩ X 1 ⊞ X 3 ) ∪ { 1 } Y 1 = ( Y 2 Y 2 ∩ Y 1 Y 3 ) ∪ a X 2 = ( X 12 ⊞ X 2 ∩ X 1 ⊞ X 1 ) ∪ { 2 } Y 2 = ( Y 12 Y 2 ∩ Y 1 Y 1 ) ∪ aa X 3 = ( X 12 ⊞ X 12 ∩ X 1 ⊞ X 2 ) ∪ { 3 } Y 3 = ( Y 12 Y 12 ∩ Y 1 Y 2 ) ∪ aaa X 12 = X 3 ⊞ X 3 ∩ X 1 ⊞ X 2 Y 12 = ( Y 3 Y 3 ∩ Y 1 Y 2 ) { a 4 n } , { a 2 · 4 n } , { a 3 · 4 n } , { a 6 · 4 n } � � base 4: ( 10 ∗ , 20 ∗ , 30 ∗ , 120 ∗ ) Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 7 / 15

  16. Nonperiodic unary conjunctive languages Example (Je˙ z, DLT 2007) a ∗ N X 1 = ( X 2 ⊞ X 2 ∩ X 1 ⊞ X 3 ) ∪ { 1 } Y 1 = ( Y 2 Y 2 ∩ Y 1 Y 3 ) ∪ a X 2 = ( X 12 ⊞ X 2 ∩ X 1 ⊞ X 1 ) ∪ { 2 } Y 2 = ( Y 12 Y 2 ∩ Y 1 Y 1 ) ∪ aa X 3 = ( X 12 ⊞ X 12 ∩ X 1 ⊞ X 2 ) ∪ { 3 } Y 3 = ( Y 12 Y 12 ∩ Y 1 Y 2 ) ∪ aaa X 12 = X 3 ⊞ X 3 ∩ X 1 ⊞ X 2 Y 12 = ( Y 3 Y 3 ∩ Y 1 Y 2 ) { a 4 n } , { a 2 · 4 n } , { a 3 · 4 n } , { a 6 · 4 n } � � base 4: ( 10 ∗ , 20 ∗ , 30 ∗ , 120 ∗ ) X 2 ⊞ X 2 = 20 ∗ ⊞ 20 ∗ = 10 + ∪ 20 ∗ 20 ∗ Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 7 / 15

  17. Nonperiodic unary conjunctive languages Example (Je˙ z, DLT 2007) a ∗ N X 1 = ( X 2 ⊞ X 2 ∩ X 1 ⊞ X 3 ) ∪ { 1 } Y 1 = ( Y 2 Y 2 ∩ Y 1 Y 3 ) ∪ a X 2 = ( X 12 ⊞ X 2 ∩ X 1 ⊞ X 1 ) ∪ { 2 } Y 2 = ( Y 12 Y 2 ∩ Y 1 Y 1 ) ∪ aa X 3 = ( X 12 ⊞ X 12 ∩ X 1 ⊞ X 2 ) ∪ { 3 } Y 3 = ( Y 12 Y 12 ∩ Y 1 Y 2 ) ∪ aaa X 12 = X 3 ⊞ X 3 ∩ X 1 ⊞ X 2 Y 12 = ( Y 3 Y 3 ∩ Y 1 Y 2 ) { a 4 n } , { a 2 · 4 n } , { a 3 · 4 n } , { a 6 · 4 n } � � base 4: ( 10 ∗ , 20 ∗ , 30 ∗ , 120 ∗ ) X 2 ⊞ X 2 = 20 ∗ ⊞ 20 ∗ = 10 + ∪ 20 ∗ 20 ∗ X 1 ⊞ X 3 = 10 ∗ ⊞ 30 ∗ = 10 + ∪ 10 ∗ 30 ∗ ∪ 30 ∗ 10 ∗ , Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 7 / 15

  18. Nonperiodic unary conjunctive languages Example (Je˙ z, DLT 2007) a ∗ N X 1 = ( X 2 ⊞ X 2 ∩ X 1 ⊞ X 3 ) ∪ { 1 } Y 1 = ( Y 2 Y 2 ∩ Y 1 Y 3 ) ∪ a X 2 = ( X 12 ⊞ X 2 ∩ X 1 ⊞ X 1 ) ∪ { 2 } Y 2 = ( Y 12 Y 2 ∩ Y 1 Y 1 ) ∪ aa X 3 = ( X 12 ⊞ X 12 ∩ X 1 ⊞ X 2 ) ∪ { 3 } Y 3 = ( Y 12 Y 12 ∩ Y 1 Y 2 ) ∪ aaa X 12 = X 3 ⊞ X 3 ∩ X 1 ⊞ X 2 Y 12 = ( Y 3 Y 3 ∩ Y 1 Y 2 ) { a 4 n } , { a 2 · 4 n } , { a 3 · 4 n } , { a 6 · 4 n } � � base 4: ( 10 ∗ , 20 ∗ , 30 ∗ , 120 ∗ ) X 2 ⊞ X 2 = 20 ∗ ⊞ 20 ∗ = 10 + ∪ 20 ∗ 20 ∗ X 1 ⊞ X 3 = 10 ∗ ⊞ 30 ∗ = 10 + ∪ 10 ∗ 30 ∗ ∪ 30 ∗ 10 ∗ , ( X 2 ⊞ X 2 ) ∩ ( X 1 ⊞ X 3 ) = 10 + . Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 7 / 15

  19. More unary conjunctive languages Theorem (Je˙ z, DLT 2007) For any regular language R ⊆ Σ ∗ k \ 0 Σ ∗ k , there exists a conjunctive grammar for f k ( R ) . Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 8 / 15

  20. More unary conjunctive languages Theorem (Je˙ z, DLT 2007) For any regular language R ⊆ Σ ∗ k \ 0 Σ ∗ k , there exists a conjunctive grammar for f k ( R ) . Note f k ( R ) has linear or exponential growth. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 8 / 15

  21. More unary conjunctive languages Theorem (Je˙ z, DLT 2007) For any regular language R ⊆ Σ ∗ k \ 0 Σ ∗ k , there exists a conjunctive grammar for f k ( R ) . Note f k ( R ) has linear or exponential growth. * * * Theorem For every trellis automaton M over Σ k with L ( M ) ⊆ Σ ∗ k \ 0 Σ ∗ k , there exists a conjunctive grammar for f k ( L ( M )) . Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 8 / 15

  22. Trellis automata (one-way real-time cellular automata) Definition A trellis automaton is a M = ( Σ, Q , I , δ, F ) where: Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 9 / 15

  23. Trellis automata (one-way real-time cellular automata) Definition A trellis automaton is a M = ( Σ, Q , I , δ, F ) where: Σ : input alphabet; Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 9 / 15

  24. Trellis automata (one-way real-time cellular automata) Definition A trellis automaton is a M = ( Σ, Q , I , δ, F ) where: Σ : input alphabet; Q : finite set of states; Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 9 / 15

  25. Trellis automata (one-way real-time cellular automata) Definition A trellis automaton is a M = ( Σ, Q , I , δ, F ) where: Σ : input alphabet; Q : finite set of states; I : Σ → Q sets initial states; Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 9 / 15

  26. Trellis automata (one-way real-time cellular automata) Definition A trellis automaton is a M = ( Σ, Q , I , δ, F ) where: Σ : input alphabet; Q : finite set of states; I : Σ → Q sets initial states; Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 9 / 15

  27. Trellis automata (one-way real-time cellular automata) Definition A trellis automaton is a M = ( Σ, Q , I , δ, F ) where: Σ : input alphabet; Q : finite set of states; I : Σ → Q sets initial states; δ : Q × Q → Q , transition function; Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 9 / 15

  28. Trellis automata (one-way real-time cellular automata) Definition A trellis automaton is a M = ( Σ, Q , I , δ, F ) where: Σ : input alphabet; Q : finite set of states; I : Σ → Q sets initial states; δ : Q × Q → Q , transition function; Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 9 / 15

  29. Trellis automata (one-way real-time cellular automata) Definition A trellis automaton is a M = ( Σ, Q , I , δ, F ) where: Σ : input alphabet; Q : finite set of states; I : Σ → Q sets initial states; δ : Q × Q → Q , transition function; Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 9 / 15

  30. Trellis automata (one-way real-time cellular automata) Definition A trellis automaton is a M = ( Σ, Q , I , δ, F ) where: Σ : input alphabet; Q : finite set of states; I : Σ → Q sets initial states; δ : Q × Q → Q , transition function; F ⊂ Q : final states. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 9 / 15

  31. Trellis automata (one-way real-time cellular automata) Definition A trellis automaton is a M = ( Σ, Q , I , δ, F ) where: Σ : input alphabet; Q : finite set of states; I : Σ → Q sets initial states; δ : Q × Q → Q , transition function; F ⊂ Q : final states. Equivalent to linear conjunctive grammars. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 9 / 15

  32. Trellis automata (one-way real-time cellular automata) Definition A trellis automaton is a M = ( Σ, Q , I , δ, F ) where: Σ : input alphabet; Q : finite set of states; I : Σ → Q sets initial states; δ : Q × Q → Q , transition function; F ⊂ Q : final states. Equivalent to linear conjunctive grammars. Closed under ∪ , ∩ , ∼ , not closed under concatenation. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 9 / 15

  33. Trellis automata (one-way real-time cellular automata) Definition A trellis automaton is a M = ( Σ, Q , I , δ, F ) where: Σ : input alphabet; Q : finite set of states; I : Σ → Q sets initial states; δ : Q × Q → Q , transition function; F ⊂ Q : final states. Equivalent to linear conjunctive grammars. Closed under ∪ , ∩ , ∼ , not closed under concatenation. Can recognize { wcw } , { a n b n c n } , { a n b 2 n } , VALC. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 9 / 15

  34. Main lemma Lemma For every trellis automaton M over Σ k with L ( M ) ⊆ Σ ∗ k \ 0 Σ ∗ k , there exists a system with ∪ , ∩ , ⊞ and regular constants, with least solution { 1 w 10 ∗ | w ⊞ 1 ∈ L ( M ) } , . . . , Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 10 / 15

  35. Main lemma Lemma For every trellis automaton M over Σ k with L ( M ) ⊆ Σ ∗ k \ 0 Σ ∗ k , there exists a system with ∪ , ∩ , ⊞ and regular constants, with least solution { 1 w 10 ∗ | w ⊞ 1 ∈ L ( M ) } , . . . , 1 w 10 ∗ represents w . Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 10 / 15

  36. Main lemma Lemma For every trellis automaton M over Σ k with L ( M ) ⊆ Σ ∗ k \ 0 Σ ∗ k , there exists a system with ∪ , ∩ , ⊞ and regular constants, with least solution { 1 w 10 ∗ | w ⊞ 1 ∈ L ( M ) } , . . . , 1 w 10 ∗ represents w . Regular constants, can be changed to singleton. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 10 / 15

  37. The construction Set of variables { X q | q ∈ Q } , representing { L M ( q ) | q ∈ Q } . Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 11 / 15

  38. The construction Set of variables { X q | q ∈ Q } , representing { L M ( q ) | q ∈ Q } . Actually, X q = { 1 w 10 ∗ | w ⊞ 1 ∈ L M ( q ) } Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 11 / 15

  39. The construction Set of variables { X q | q ∈ Q } , representing { L M ( q ) | q ∈ Q } . Actually, X q = { 1 w 10 ∗ | w ⊞ 1 ∈ L M ( q ) } aub ∈ L M ( q ) Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 11 / 15

  40. The construction Set of variables { X q | q ∈ Q } , representing { L M ( q ) | q ∈ Q } . Actually, X q = { 1 w 10 ∗ | w ⊞ 1 ∈ L M ( q ) } aub ∈ L M ( q ) ⇔ Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 11 / 15

  41. The construction Set of variables { X q | q ∈ Q } , representing { L M ( q ) | q ∈ Q } . Actually, X q = { 1 w 10 ∗ | w ⊞ 1 ∈ L M ( q ) } aub ∈ L M ( q ) ⇔ ∃ q ′ , q ′′ : δ ( q ′ , q ′′ ) = q , Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 11 / 15

  42. The construction Set of variables { X q | q ∈ Q } , representing { L M ( q ) | q ∈ Q } . Actually, X q = { 1 w 10 ∗ | w ⊞ 1 ∈ L M ( q ) } aub ∈ L M ( q ) ⇔ ∃ q ′ , q ′′ : δ ( q ′ , q ′′ ) = q , au ∈ L M ( q ′ ) , Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 11 / 15

  43. The construction Set of variables { X q | q ∈ Q } , representing { L M ( q ) | q ∈ Q } . Actually, X q = { 1 w 10 ∗ | w ⊞ 1 ∈ L M ( q ) } aub ∈ L M ( q ) ⇔ ∃ q ′ , q ′′ : δ ( q ′ , q ′′ ) = q , au ∈ L M ( q ′ ) , ub ∈ L M ( q ′′ ) . Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 11 / 15

  44. The construction Set of variables { X q | q ∈ Q } , representing { L M ( q ) | q ∈ Q } . Actually, X q = { 1 w 10 ∗ | w ⊞ 1 ∈ L M ( q ) } aub ∈ L M ( q ) ⇔ ∃ q ′ , q ′′ : δ ( q ′ , q ′′ ) = q , au ∈ L M ( q ′ ) , ub ∈ L M ( q ′′ ) . Let 1 au 10 ∗ ⊆ X q ′ , 1 ub 10 ∗ ⊆ X q ′′ . � X q = ρ b ( X q ′ ) ∩ λ a ( X q ′′ ) q ′ , q ′′ : δ ( q ′ , q ′′ )= q a , b ∈ Σ k Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 11 / 15

  45. The construction Set of variables { X q | q ∈ Q } , representing { L M ( q ) | q ∈ Q } . Actually, X q = { 1 w 10 ∗ | w ⊞ 1 ∈ L M ( q ) } aub ∈ L M ( q ) ⇔ ∃ q ′ , q ′′ : δ ( q ′ , q ′′ ) = q , au ∈ L M ( q ′ ) , ub ∈ L M ( q ′′ ) . Let 1 au 10 ∗ ⊆ X q ′ , 1 ub 10 ∗ ⊆ X q ′′ . � X q = ρ b ( X q ′ ) ∩ λ a ( X q ′′ ) q ′ , q ′′ : δ ( q ′ , q ′′ )= q a , b ∈ Σ k λ a ( 1 w 10 k ) = 1 aw 10 k ρ b ( 1 w 10 k ) = 1 wb 10 k − 1 Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 11 / 15

  46. How does ρ look like The equations for ρ j : �� � k j ′ 20 ∗ � � ( X ∩ 1 Σ ∗ k j ′ 10 ∗ ⊞ 10 ∗ ) ∩ 1 Σ ∗ ⊞ ( j − 2 ) 10 ∗ ∩ 1 Σ ∗ k j 10 ∗ ρ j ( X ) = j ′ Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 12 / 15

  47. How does ρ look like The equations for ρ j : �� � k j ′ 20 ∗ � � ( X ∩ 1 Σ ∗ k j ′ 10 ∗ ⊞ 10 ∗ ) ∩ 1 Σ ∗ ⊞ ( j − 2 ) 10 ∗ ∩ 1 Σ ∗ k j 10 ∗ ρ j ( X ) = j ′ Word Operation New word Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 12 / 15

  48. How does ρ look like The equations for ρ j : �� � k j ′ 20 ∗ � � ( X ∩ 1 Σ ∗ k j ′ 10 ∗ ⊞ 10 ∗ ) ∩ 1 Σ ∗ ⊞ ( j − 2 ) 10 ∗ ∩ 1 Σ ∗ k j 10 ∗ ρ j ( X ) = j ′ Word Operation New word 1 w 10 ℓ Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 12 / 15

  49. How does ρ look like The equations for ρ j : �� � k j ′ 20 ∗ � � ( X ∩ 1 Σ ∗ k j ′ 10 ∗ ⊞ 10 ∗ ) ∩ 1 Σ ∗ ⊞ ( j − 2 ) 10 ∗ ∩ 1 Σ ∗ k j 10 ∗ ρ j ( X ) = j ′ Word Operation New word 1 w 10 ℓ = 1 w ′ j ′ 10 ℓ Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 12 / 15

  50. How does ρ look like The equations for ρ j : �� � k j ′ 20 ∗ � � ( X ∩ 1 Σ ∗ k j ′ 10 ∗ ⊞ 10 ∗ ) ∩ 1 Σ ∗ ⊞ ( j − 2 ) 10 ∗ ∩ 1 Σ ∗ k j 10 ∗ ρ j ( X ) = j ′ Word Operation New word 1 w 10 ℓ = 1 w ′ j ′ 10 ℓ 1 w ′ j ′ 10 ℓ ∩ 1 Σ ∗ k j ′ 10 ∗ Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 12 / 15

  51. How does ρ look like The equations for ρ j : �� � k j ′ 20 ∗ � � ( X ∩ 1 Σ ∗ k j ′ 10 ∗ ⊞ 10 ∗ ) ∩ 1 Σ ∗ ⊞ ( j − 2 ) 10 ∗ ∩ 1 Σ ∗ k j 10 ∗ ρ j ( X ) = j ′ Word Operation New word 1 w 10 ℓ = 1 w ′ j ′ 10 ℓ 1 w ′ j ′ 10 ℓ ∩ 1 Σ ∗ k j ′ 10 ∗ ⊞ 10 ∗ ∩ 1 Σ ∗ 1 w ′ j ′ 10 ℓ 1 w ′ j ′ 20 ℓ k j ′ 20 ∗ Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 12 / 15

  52. How does ρ look like The equations for ρ j : �� � k j ′ 20 ∗ � � ( X ∩ 1 Σ ∗ k j ′ 10 ∗ ⊞ 10 ∗ ) ∩ 1 Σ ∗ ⊞ ( j − 2 ) 10 ∗ ∩ 1 Σ ∗ k j 10 ∗ ρ j ( X ) = j ′ Word Operation New word 1 w 10 ℓ = 1 w ′ j ′ 10 ℓ 1 w ′ j ′ 10 ℓ ∩ 1 Σ ∗ k j ′ 10 ∗ ⊞ 10 ∗ ∩ 1 Σ ∗ 1 w ′ j ′ 10 ℓ 1 w ′ j ′ 20 ℓ k j ′ 20 ∗ ⊞ ( j − 2 ) 10 ∗ ∩ 1 Σ ∗ 1 w ′ j ′ j 10 ℓ − 1 1 w ′ j ′ 20 ℓ k j 10 ∗ Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 12 / 15

  53. How does ρ look like The equations for ρ j : �� � k j ′ 20 ∗ � � ( X ∩ 1 Σ ∗ k j ′ 10 ∗ ⊞ 10 ∗ ) ∩ 1 Σ ∗ ⊞ ( j − 2 ) 10 ∗ ∩ 1 Σ ∗ k j 10 ∗ ρ j ( X ) = j ′ Word Operation New word 1 w 10 ℓ = 1 w ′ j ′ 10 ℓ 1 w ′ j ′ 10 ℓ ∩ 1 Σ ∗ k j ′ 10 ∗ ⊞ 10 ∗ ∩ 1 Σ ∗ 1 w ′ j ′ 10 ℓ 1 w ′ j ′ 20 ℓ k j ′ 20 ∗ ⊞ ( j − 2 ) 10 ∗ ∩ 1 Σ ∗ 1 w ′ j ′ j 10 ℓ − 1 1 w ′ j ′ 20 ℓ k j 10 ∗ 1 w ′ j ′ j 10 ℓ − 1 1 wj 10 ℓ − 1 � j ′ Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 12 / 15

  54. Undecidable properties Proposition “Given conjunctive grammar G over { a } , determine whether L ( G ) = ∅ ” Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 13 / 15

  55. Undecidable properties Proposition “Given conjunctive grammar G over { a } , determine whether L ( G ) = ∅ ” — undecidable. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 13 / 15

  56. Undecidable properties Proposition “Given conjunctive grammar G over { a } , determine whether L ( G ) = ∅ ” — undecidable. Turing machine T recognizes X ; Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 13 / 15

  57. Undecidable properties Proposition “Given conjunctive grammar G over { a } , determine whether L ( G ) = ∅ ” — undecidable. Turing machine T recognizes X ; Trellis automaton M for VALC ( T ) ; Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 13 / 15

  58. Undecidable properties Proposition “Given conjunctive grammar G over { a } , determine whether L ( G ) = ∅ ” — undecidable. Turing machine T recognizes X ; Trellis automaton M for VALC ( T ) ; Conjunctive grammar G for f k ( VALC ( T )) ; Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 13 / 15

  59. Undecidable properties Proposition “Given conjunctive grammar G over { a } , determine whether L ( G ) = ∅ ” — undecidable. Turing machine T recognizes X ; Trellis automaton M for VALC ( T ) ; Conjunctive grammar G for f k ( VALC ( T )) ; L ( G ) = ∅ ⇔ L ( T ) = ∅ Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 13 / 15

  60. Undecidable properties Proposition “Given conjunctive grammar G over { a } , determine whether L ( G ) = ∅ ” — undecidable. Turing machine T recognizes X ; Trellis automaton M for VALC ( T ) ; Conjunctive grammar G for f k ( VALC ( T )) ; L ( G ) = ∅ ⇔ L ( T ) = ∅ Theorem For every fixed conjunctive L 0 ⊆ a ∗ , the problem “Given conjunctive grammar G over { a } , determine whether L ( G ) = L 0 ” — undecidable. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 13 / 15

  61. Unbounded growth Theorem ∀ r. e. set X = { g X ( n ) | n � 1 } , with g X ր ∃ conjunctive grammar G with L ( G ) = { a g G ( n ) | n � 1 } : Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 14 / 15

  62. Unbounded growth Theorem ∀ r. e. set X = { g X ( n ) | n � 1 } , with g X ր ∃ conjunctive grammar G with L ( G ) = { a g G ( n ) | n � 1 } : g G ( n ) > g X ( n ) ( ∀ n � 1 ) Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 14 / 15

  63. Unbounded growth Theorem ∀ r. e. set X = { g X ( n ) | n � 1 } , with g X ր ∃ conjunctive grammar G with L ( G ) = { a g G ( n ) | n � 1 } : g G ( n ) > g X ( n ) ( ∀ n � 1 ) Turing machine T recognizes X ; Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 14 / 15

  64. Unbounded growth Theorem ∀ r. e. set X = { g X ( n ) | n � 1 } , with g X ր ∃ conjunctive grammar G with L ( G ) = { a g G ( n ) | n � 1 } : g G ( n ) > g X ( n ) ( ∀ n � 1 ) Turing machine T recognizes X ; Trellis automaton M for VALC ( T ) ; Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 14 / 15

  65. Unbounded growth Theorem ∀ r. e. set X = { g X ( n ) | n � 1 } , with g X ր ∃ conjunctive grammar G with L ( G ) = { a g G ( n ) | n � 1 } : g G ( n ) > g X ( n ) ( ∀ n � 1 ) Turing machine T recognizes X ; Trellis automaton M for VALC ( T ) ; Conjunctive grammar G for f k ( VALC ( T )) ; Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 14 / 15

  66. Unbounded growth Theorem ∀ r. e. set X = { g X ( n ) | n � 1 } , with g X ր ∃ conjunctive grammar G with L ( G ) = { a g G ( n ) | n � 1 } : g G ( n ) > g X ( n ) ( ∀ n � 1 ) Turing machine T recognizes X ; Trellis automaton M for VALC ( T ) ; Conjunctive grammar G for f k ( VALC ( T )) ; g G ( n ) > g X ( n ) . Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 14 / 15

  67. Unbounded growth Theorem ∀ r. e. set X = { g X ( n ) | n � 1 } , with g X ր ∃ conjunctive grammar G with L ( G ) = { a g G ( n ) | n � 1 } : g G ( n ) > g X ( n ) ( ∀ n � 1 ) Turing machine T recognizes X ; Trellis automaton M for VALC ( T ) ; Conjunctive grammar G for f k ( VALC ( T )) ; g G ( n ) > g X ( n ) . Remark Polynomial growth can be achieved. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 14 / 15

  68. Conclusion Conjunctive grammar: CFG with intersection. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 15 / 15

  69. Conclusion Conjunctive grammar: CFG with intersection. Specifying unary notation of nontrivial languages. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 15 / 15

  70. Conclusion Conjunctive grammar: CFG with intersection. Specifying unary notation of nontrivial languages. ◮ { a f k ( w ) | w ∈ L ( M ) } for any TA M . Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 15 / 15

  71. Conclusion Conjunctive grammar: CFG with intersection. Specifying unary notation of nontrivial languages. ◮ { a f k ( w ) | w ∈ L ( M ) } for any TA M . ◮ Equations over sets of integers. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 15 / 15

  72. Conclusion Conjunctive grammar: CFG with intersection. Specifying unary notation of nontrivial languages. ◮ { a f k ( w ) | w ∈ L ( M ) } for any TA M . ◮ Equations over sets of integers. ◮ Positional notation. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 15 / 15

  73. Conclusion Conjunctive grammar: CFG with intersection. Specifying unary notation of nontrivial languages. ◮ { a f k ( w ) | w ∈ L ( M ) } for any TA M . ◮ Equations over sets of integers. ◮ Positional notation. Unary notation of VALC ( T ) is conjunctive. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 15 / 15

  74. Conclusion Conjunctive grammar: CFG with intersection. Specifying unary notation of nontrivial languages. ◮ { a f k ( w ) | w ∈ L ( M ) } for any TA M . ◮ Equations over sets of integers. ◮ Positional notation. Unary notation of VALC ( T ) is conjunctive. ◮ Undecidability. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 15 / 15

  75. Conclusion Conjunctive grammar: CFG with intersection. Specifying unary notation of nontrivial languages. ◮ { a f k ( w ) | w ∈ L ( M ) } for any TA M . ◮ Equations over sets of integers. ◮ Positional notation. Unary notation of VALC ( T ) is conjunctive. ◮ Undecidability. ◮ Growth not recursively bounded. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 15 / 15

  76. Conclusion Conjunctive grammar: CFG with intersection. Specifying unary notation of nontrivial languages. ◮ { a f k ( w ) | w ∈ L ( M ) } for any TA M . ◮ Equations over sets of integers. ◮ Positional notation. Unary notation of VALC ( T ) is conjunctive. ◮ Undecidability. ◮ Growth not recursively bounded. Research problems. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 15 / 15

  77. Conclusion Conjunctive grammar: CFG with intersection. Specifying unary notation of nontrivial languages. ◮ { a f k ( w ) | w ∈ L ( M ) } for any TA M . ◮ Equations over sets of integers. ◮ Positional notation. Unary notation of VALC ( T ) is conjunctive. ◮ Undecidability. ◮ Growth not recursively bounded. Research problems. ◮ Closure under complementation. Artur Je˙ z, Alexander Okhotin Conjunctive grammars over a unary alphabet September 7, 2007 15 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend