communication complexity of private simultaneous messages
play

Communication Complexity of Private Simultaneous Messages, Revisited - PowerPoint PPT Presentation

Communication Complexity of Private Simultaneous Messages, Revisited Manoj Mishra Department of Electrical Engineering - Systems Tel Aviv University Joint work with Benny Applebaum (TAU), Thomas Holenstein (Google), Ofer Shayevitz (TAU)


  1. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 0 1 . . . . . . . . . a J b L

  2. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 0 1 . . . . . . . . . a J b L

  3. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 . . 1 0 1 . . . . . a J b L

  4. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 . . 1 0 1 . . . . . a J b L

  5. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 . . 1 Communication: log |M A | + log |M B | 0 1 . . . . . a J b L

  6. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 . . Mechanism: 1 0 1 . . . . . a J b L

  7. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 . . Mechanism: 1 • Lowerbound number of r ’s 0 1 . . . . . a J b L

  8. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 . . Mechanism: 1 • Lowerbound number of r ’s 0 1 . . • Lowerbound size of each image set . . . a J b L

  9. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 . . Mechanism: 1 • Lowerbound number of r ’s 0 1 . . • Lowerbound size of each image set . . • Upperbound size of overlap between two image sets . a J b L

  10. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 Assumption 1 on f : . . 1 0 1 . . . . . a J b L

  11. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 Assumption 1 on f : . . 1 • f non-degenerate: 0 1 . . . . . a J b L

  12. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 Assumption 1 on f : . . 1 • f non-degenerate: 0 1 . . • x � = x ′ ⇒ f ( x , · ) � = f ( x ′ , · ) . . . a J b L

  13. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 Assumption 1 on f : . . 1 • f non-degenerate: 0 1 . . • x � = x ′ ⇒ f ( x , · ) � = f ( x ′ , · ) • Simarly for y � = y ′ . . . a J b L

  14. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 Assumption 1 on f : . . 1 • f non-degenerate: 0 1 . . • x � = x ′ ⇒ f ( x , · ) � = f ( x ′ , · ) • Simarly for y � = y ′ . . . a J Consequence: b L

  15. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 Assumption 1 on f : . . 1 • f non-degenerate: 0 1 . . • x � = x ′ ⇒ f ( x , · ) � = f ( x ′ , · ) • Simarly for y � = y ′ . . . a J Consequence: • r is one-to-one b L

  16. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 Useful Edge ( x , y ): . . 1 0 1 . . . . . a J b L

  17. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 Useful Edge ( x , y ): . . 1 • f ( x , y ) = f ( x , y ) 0 1 . . . . . a J b L

  18. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 Useful Edge ( x , y ): . . 1 • f ( x , y ) = f ( x , y ) 0 1 . . • x : x with last bit inverted . . . a J b L

  19. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 Useful Edge ( x , y ): . . 1 • f ( x , y ) = f ( x , y ) 0 1 . . • x : x with last bit inverted . . Assumption 2 on f : . a J b L

  20. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 Useful Edge ( x , y ): . . 1 • f ( x , y ) = f ( x , y ) 0 1 . . • x : x with last bit inverted . . Assumption 2 on f : • Half of the edges are useful . a J b L

  21. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 x 1 y 1 1 0 . 1 . 0 1 x 2 y 2 r 2 0 · · 1 . . 1 · · 0 1 x K y K 1 r 3 0 1 . . 0 1 Useful Edge ( x , y ): . . 1 • f ( x , y ) = f ( x , y ) 0 1 . . • x : x with last bit inverted . . Assumption 2 on f : • Half of the edges are useful . a J Consequence: b L

  22. Revisiting P.S.M. Lowerbound M A M B 0 a 1 b 1 0 Y X 1 a 2 b 2 r 1 0 y 1 x 1 1 0 1 . . 0 1 y 2 x 2 r 2 0 · · 1 1 . . · · 0 1 x K y K 1 r 3 0 . 1 . 0 1 . . Useful Edge ( x , y ): 1 • f ( x , y ) = f ( x , y ) 0 1 . . • x : x with last bit inverted . . Assumption 2 on f : • Half of the edges are useful . a J Consequence: b L • Image set has half of f ’s edges

  23. Revisiting P.S.M. Lowerbound r r y x r ˜ r ˜ a b Trivial Overlaps

  24. Revisiting P.S.M. Lowerbound r r y x r ˜ r ˜ a b Trivial Overlaps x r r y r ˜ ˜ a r b x Non-trivial Overlaps

  25. Revisiting P.S.M. Lowerbound r r y x r ˜ r ˜ a b Trivial Overlaps x r r y r ˜ ˜ a r b x Non-trivial Overlaps Y X ′ ◦ 0 Complementary Similar Rectangles X ′ ◦ 1 Truth Table of f

  26. Revisiting P.S.M. Lowerbound r r y x r ˜ r ˜ a b Trivial Overlaps x r r y r ˜ ˜ a r b x Non-trivial Overlaps Y X ′ ◦ 0 Complementary Similar Rectangles X ′ ◦ 1 Assumption 3 on f : Size ≤ 2 · 2 k Truth Table of f

  27. Revisiting P.S.M. Lowerbound r r y x r ˜ r ˜ a b Trivial Overlaps x r r y r ˜ ˜ a r b x Non-trivial Overlaps y x r r ˜ r ˜ r a b ˜ ˜ y x Unaccounted Overlaps

  28. Revisiting P.S.M. Lowerbound r r y x r ˜ r ˜ a b Trivial Overlaps x r r y r ˜ ˜ a r b x Non-trivial Overlaps y x r r ˜ r ˜ r a b ˜ ˜ y x Unaccounted Overlaps Implication:

  29. Revisiting P.S.M. Lowerbound r r y x r ˜ r ˜ a b Trivial Overlaps x r r y r ˜ ˜ a r b x Non-trivial Overlaps y x r r ˜ r ˜ r a b ˜ ˜ y x Unaccounted Overlaps Implication: • Reveal all inputs not required to be private .

  30. Revisiting P.S.M. Lowerbound r r y x r ˜ r ˜ a b Trivial Overlaps x r r y r ˜ ˜ a r b x Non-trivial Overlaps y x r r ˜ r ˜ r a b ˜ ˜ y x Unaccounted Overlaps Implication: • Reveal all inputs not required to be private . • Potentially higher communication cost

  31. Counterexample to P.S.M. Lowerbound � T 0 · x [1 : k − 1] ◦ 0 , � x [ k ] = 0 L ( x ) := , T 1 · x [1 : k − 1] ◦ 1 , x [ k ] = 1 f ( x , y ) = < L ( x ) , y > , T 0 , T 1 , T 0 + T 1 : full rank

  32. Counterexample to P.S.M. Lowerbound � T 0 · x [1 : k − 1] ◦ 0 , � x [ k ] = 0 L ( x ) := , T 1 · x [1 : k − 1] ◦ 1 , x [ k ] = 1 f ( x , y ) = < L ( x ) , y > , T 0 , T 1 , T 0 + T 1 : full rank x , R A C y , R B

  33. Counterexample to P.S.M. Lowerbound � T 0 · x [1 : k − 1] ◦ 0 , � x [ k ] = 0 L ( x ) := , T 1 · x [1 : k − 1] ◦ 1 , x [ k ] = 1 f ( x , y ) = < L ( x ) , y > , T 0 , T 1 , T 0 + T 1 : full rank x , R A L ( x ) C y , R B

  34. Counterexample to P.S.M. Lowerbound � T 0 · x [1 : k − 1] ◦ 0 , � x [ k ] = 0 L ( x ) := , T 1 · x [1 : k − 1] ◦ 1 , x [ k ] = 1 f ( x , y ) = < L ( x ) , y > , T 0 , T 1 , T 0 + T 1 : full rank • PSM for < · , · > x , R A L ( x ) C y , R B

  35. Counterexample to P.S.M. Lowerbound � T 0 · x [1 : k − 1] ◦ 0 , � x [ k ] = 0 L ( x ) := , T 1 · x [1 : k − 1] ◦ 1 , x [ k ] = 1 f ( x , y ) = < L ( x ) , y > , T 0 , T 1 , T 0 + T 1 : full rank • PSM for < · , · > x , R A M A L ( x ) < L ( x ) , y > C M B y , R B

  36. Counterexample to P.S.M. Lowerbound � T 0 · x [1 : k − 1] ◦ 0 , � x [ k ] = 0 L ( x ) := , T 1 · x [1 : k − 1] ◦ 1 , x [ k ] = 1 f ( x , y ) = < L ( x ) , y > , T 0 , T 1 , T 0 + T 1 : full rank • PSM for < · , · > x , R A M A L ( x ) < L ( x ) , y > C M B • Communication: 2k + 2 bits y , R B

  37. New Proof for a Communication Lowerbound • x ∈ X , y ∈ Y , R ∈ { 0 , 1 } ∗ • f : X × Y → Z x , R A M A f ( x , y ) C • Pefect correctness M B • Perfect privacy y , R B

  38. Key idea of the proof M A M B a 0 b 0 Y X y 0 x 0 a 1 b 1 x 1 y 1 a 2 b 2 . . . . . . . x J . y K b ˜ K a ˜ J

  39. Key idea of the proof M A M B a 0 b 0 Y X y 0 x 0 a 1 b 1 x 1 y 1 a 2 b 2 . . . . . . . x J . y K b ˜ K µ ∽ X × Y a ˜ J

  40. Key idea of the proof M A M B a 0 b 0 Y X y 0 x 0 a 1 b 1 x 1 y 1 a 2 b 2 ( X , Y ) . . . . . . . x J . y K b ˜ K µ ∽ X × Y a ˜ J

  41. Key idea of the proof M A M B R a 0 b 0 Y X y 0 x 0 a 1 b 1 x 1 y 1 a 2 b 2 ( X , Y ) . . . . . . . x J . y K b ˜ K µ ∽ X × Y a ˜ J

  42. Key idea of the proof M A M B R a 0 b 0 Y X y 0 x 0 a 1 b 1 x 1 y 1 a 2 b 2 ( X , Y ) . . . . ( X ′ , Y ′ ) . . . x J . y K b ˜ K µ ∽ X × Y a ˜ J

  43. Key idea of the proof M A M B R a 0 b 0 Y X y 0 x 0 a 1 b 1 x 1 y 1 a 2 b 2 ( X , Y ) . . . . ( X ′ , Y ′ ) . . . x J R ′ . y K b ˜ K µ ∽ X × Y a ˜ J

  44. Main Result Theorem Let f : X × Y → Z be non-degenerate and let µ be a distribution on X × Y . Then, PSM ( f ) ≥ log(1 /α ( µ )) + H ∞ ( µ ) − log(1 /β ( µ )) − 1 .

  45. Main Result Theorem Let f : X × Y → Z be non-degenerate and let µ be a distribution on X × Y . Then, PSM ( f ) ≥ log(1 /α ( µ )) + H ∞ ( µ ) − log(1 /β ( µ )) − 1 . Y R 1 α ( µ ) := Volume of disjoint, Similar Rectangles X := ( R 1 , R 2 : similar, disjoint) { min( µ ( R 1 ) , µ ( R 2 )) } max R 2 Truth Table of f

  46. Main Result Theorem Let f : X × Y → Z be non-degenerate and let µ be a distribution on X × Y . Then, PSM ( f ) ≥ log(1 /α ( µ )) + H ∞ ( µ ) − log(1 /β ( µ )) − 1 . H ∞ ( µ ) := Min. Entropy of µ

  47. Main Result Theorem Let f : X × Y → Z be non-degenerate and let µ be a distribution on X × Y . Then, PSM ( f ) ≥ log(1 /α ( µ )) + H ∞ ( µ ) − log(1 /β ( µ )) − 1 . β ( µ ) := Volume of Useful Edges := Pr[( X , Y ) � = ( X ′ , Y ′ ) | f ( X , Y ) = f ( X ′ , Y ′ )]

  48. Special cases Theorem (Boolean function) For non-degenerate f : X × Y → { 0 , 1 } , PSM ( f ) ≥ 2(log |X| + log |Y| ) − log M − 3 .

  49. Special cases Theorem (Boolean function) For non-degenerate f : X × Y → { 0 , 1 } , PSM ( f ) ≥ 2(log |X| + log |Y| ) − log M − 3 . M := ( R 1 , R 2 : similar, disjoint) | R 1 | max

  50. Special cases Theorem (Boolean function) For non-degenerate f : X × Y → { 0 , 1 } , PSM ( f ) ≥ 2(log |X| + log |Y| ) − log M − 3 . Proof. Use µ : uniform distribution. �

  51. Special cases Theorem (Boolean function) For non-degenerate f : X × Y → { 0 , 1 } , PSM ( f ) ≥ 2(log |X| + log |Y| ) − log M − 3 . Corollary (Random function) For a random, boolean f : { 0 , 1 } k × { 0 , 1 } k → { 0 , 1 } , w.h.p., PSM ( f ) ≥ 3 k − 2 log k − 1 .

  52. Special cases Theorem (Boolean function) For non-degenerate f : X × Y → { 0 , 1 } , PSM ( f ) ≥ 2(log |X| + log |Y| ) − log M − 3 . Corollary (Random function) For a random, boolean f : { 0 , 1 } k × { 0 , 1 } k → { 0 , 1 } , w.h.p., PSM ( f ) ≥ 3 k − 2 log k − 1 . Proof. W.h.p., M ≤ k 2 · 2 k . �

  53. Special cases Theorem (Boolean function) For non-degenerate f : X × Y → { 0 , 1 } , PSM ( f ) ≥ 2(log |X| + log |Y| ) − log M − 3 . Corollary (Random function) For a random, boolean f : { 0 , 1 } k × { 0 , 1 } k → { 0 , 1 } , w.h.p., PSM ( f ) ≥ 3 k − 2 log k − 1 . Theorem (Explicit functions) f k : { 0 , 1 } k × { 0 , 1 } k → { 0 , 1 } � � ∃ k for which PSM ( f k ) ≥ 3 k − O (log k )

  54. Special cases Theorem (Boolean function) For non-degenerate f : X × Y → { 0 , 1 } , PSM ( f ) ≥ 2(log |X| + log |Y| ) − log M − 3 . Corollary (Random function) For a random, boolean f : { 0 , 1 } k × { 0 , 1 } k → { 0 , 1 } , w.h.p., PSM ( f ) ≥ 3 k − 2 log k − 1 . Theorem (Explicit functions) f k : { 0 , 1 } k × { 0 , 1 } k → { 0 , 1 } � � ∃ k for which PSM ( f k ) ≥ 3 k − O (log k ) Proof. Suffices to sample f k from poly(k)-wise independent distribution. �

  55. Conditional Disclosure of a Secret (C.D.S.) • x ∈ X , y ∈ Y • s ∈ { 0 , 1 } x , s A C ( x , y ) y B

  56. Conditional Disclosure of a Secret (C.D.S.) • x ∈ X , y ∈ Y • s ∈ { 0 , 1 } x , s • h : X × Y → { 0 , 1 } A s iff h ( x , y ) = 1 C ( x , y ) y B

  57. Conditional Disclosure of a Secret (C.D.S.) • x ∈ X , y ∈ Y • s ∈ { 0 , 1 } x , s • h : X × Y → { 0 , 1 } A s iff h ( x , y ) = 1 C ( x , y ) • Pefect correctness y B • Perfect privacy

  58. Conditional Disclosure of a Secret (C.D.S.) • x ∈ X , y ∈ Y • s ∈ { 0 , 1 } x , s , R • h : X × Y → { 0 , 1 } A • R ∈ { 0 , 1 } ∗ s iff h ( x , y ) = 1 C ( x , y ) • Pefect correctness y , R B • Perfect privacy

  59. Conditional Disclosure of a Secret (C.D.S.) • x ∈ X , y ∈ Y • s ∈ { 0 , 1 } x , s , R • h : X × Y → { 0 , 1 } A • R ∈ { 0 , 1 } ∗ M A s iff h ( x , y ) = 1 C ( x , y ) M B • Pefect correctness y , R B • Perfect privacy

  60. Conditional Disclosure of a Secret (C.D.S.) • x ∈ X , y ∈ Y • s ∈ { 0 , 1 } x , s , R • h : X × Y → { 0 , 1 } A • R ∈ { 0 , 1 } ∗ M A s iff h ( x , y ) = 1 C ( x , y ) M B • Pefect correctness y , R B • Perfect privacy • Useful applications: unconditionally private information retrieval (P.I.R.), priced O.T., secret sharing for graph-based access structures, attribute-based encryption

  61. Conditional Disclosure of a Secret (C.D.S.) • x ∈ X , y ∈ Y • s ∈ { 0 , 1 } x , s , R • h : X × Y → { 0 , 1 } A • R ∈ { 0 , 1 } ∗ M A s iff h ( x , y ) = 1 C ( x , y ) M B • Pefect correctness y , R B • Perfect privacy • Communication lowerbound : • Ω(log k ) for several explicit predicates (Gay et al., CRYPTO, 2015)

  62. Conditional Disclosure of a Secret (C.D.S.) • x ∈ X , y ∈ Y • s ∈ { 0 , 1 } x , s , R • h : X × Y → { 0 , 1 } A • R ∈ { 0 , 1 } ∗ M A s iff h ( x , y ) = 1 C ( x , y ) M B • Pefect correctness y , R B • Perfect privacy • Communication lowerbound : • Ω(log k ) for several explicit predicates (Gay et al., CRYPTO, 2015) • k − o ( k ) for some non-explicit predicate (Applebaum et al., CRYPTO, 2017)

  63. C.D.S. Lowerbound Theorem For predicate h : X × Y → { 0 , 1 } , CDS ( h ) ≥ 2 log | h − 1 (0) | − log M − log |X| − log |Y| − 1 .

  64. C.D.S. Lowerbound Theorem For predicate h : X × Y → { 0 , 1 } , CDS ( h ) ≥ 2 log | h − 1 (0) | − log M − log |X| − log |Y| − 1 . | h − 1 (0) | := Number of 0-inputs of h

  65. C.D.S. Lowerbound Theorem For predicate h : X × Y → { 0 , 1 } , CDS ( h ) ≥ 2 log | h − 1 (0) | − log M − log |X| − log |Y| − 1 . Y M := Size of largest 0-monochromatic rectangle of h X All 0’s Truth Table of h

  66. C.D.S. Lowerbound : Special Cases Corollary (CDS for Inner Product) For predicate h ( x , y ) = < x , y > , x , y ∈ { 0 , 1 } k , CDS ( h ) ≥ k − 3 − o (1) .

  67. C.D.S. Lowerbound : Special Cases Corollary (CDS for Inner Product) For predicate h ( x , y ) = < x , y > , x , y ∈ { 0 , 1 } k , CDS ( h ) ≥ k − 3 − o (1) . Remarks: • Tight bound. • Previous bound: Ω(log k ).

  68. C.D.S. Lowerbound : Special Cases Corollary (CDS for Inner Product) For predicate h ( x , y ) = < x , y > , x , y ∈ { 0 , 1 } k , CDS ( h ) ≥ k − 3 − o (1) . Remarks: • Tight bound. • Previous bound: Ω(log k ). Corollary (CDS for Random predicate) For a random predicate h : { 0 , 1 } k × { 0 , 1 } k → { 0 , 1 } , w.h.p., CDS ( h ) ≥ k − 4 − o (1) .

  69. Summary We revisited the P.S.M. lowerbound of Feige, Kilian, Naor(FKN) (STOC, 1994) and proved the following results:

  70. Summary We revisited the P.S.M. lowerbound of Feige, Kilian, Naor(FKN) (STOC, 1994) and proved the following results: • Counterexample: an f whose P.S.M. communicates only 2 k + 2 bits.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend