chemometric methods for the kinetic hard modelling of
play

Chemometric Methods for the Kinetic Hard-modelling of Spectroscopic - PowerPoint PPT Presentation

Chemometric Methods for the Kinetic Hard-modelling of Spectroscopic Data ETH Zurich, March 23 rd 2009 Julien Billeter julien.billeter@chem.ethz.ch ETH Zrich, Institute for Chemical and Bioengineering, Safety and Environmental Technology


  1. Chemometric Methods for the Kinetic Hard-modelling of Spectroscopic Data ETH Zurich, March 23 rd 2009 Julien Billeter julien.billeter@chem.ethz.ch ETH Zürich, Institute for Chemical and Bioengineering, Safety and Environmental Technology Group, Zürich, Switzerland. Chemometric Methods for the Kinetic Hard-modelling of Spectroscopic Data

  2. Content Part 1 Chemometrics and kinetic hard-modelling Part 2 Uncertainties and error propagation Part 3 Rank deficiency and spectral validation Chemometric Methods for the Kinetic Hard-modelling of Spectroscopic Data

  3. Part 1 Chemometrics and kinetic hard-modelling Part 2 Uncertainties and error propagation Part 3 Rank deficiency and spectral validation Chemometric Methods for the Kinetic Hard-modelling of Spectroscopic Data

  4. What is Chemometrics? � Chemometrics is the chemical discipline that uses mathematical and statistical methods to: � (a) design or select optimal measurement procedures and experiments, and � (b) provide maximum chemical information by analyzing chemical data Matthias Otto (2007) From: Chemometrics – Statistics and Computer Application in Analytical Chemistry Chemometric Methods for the Kinetic Hard-modelling of Spectroscopic Data

  5. Beer’s law nw nw nw ns nt nt ns nt x + A R Y C = ( nt x nw ) ( ns x nw ) ( nt x ns ) ( nt x nw ) x = + + ⎯⎯ → k A B C 1 + ⎯⎯ → k A C D 2 Chemometric Methods for the Kinetic Hard-modelling of Spectroscopic Data

  6. Direct fitting = Y C A Beer’s law Modelled part = = C function ( ) k A function ( ) θ modelled modelled Linear counter part + + = = � Implicit calibration A C Y [1] C YA [2] modelled modelled + + = = A ( C Y ) � Explicit calibration C ( YA ) calibration calibration 2 2 − − Least squares fitting min Y CA min Y C A modelled modelled θ k 2 − + = + = min C C ( ) − − ( ) 1 1 T T T T [1] C C C C modelled [2] A A AA k Chemometric Methods for the Kinetic Hard-modelling of Spectroscopic Data

  7. Indirect (inverse) fitting = = C Y B A B Y Inverse model C A Modelled part = = C function ( ) k A function ( ) θ modelled modelled Linear counter part + = + = � Implicit calibration B Y C B A Y C modelled A modelled + + = = B ( Y C ) � Explicit calibration B ( AY ) C calibration A calibration 2 2 − − Least squares fitting min A B Y min C YB modelled A modelled C θ k 2 − min C C modelled k Chemometric Methods for the Kinetic Hard-modelling of Spectroscopic Data

  8. Modelling concentrations (C) or spectra (A) ? Modelling C Modelling A Based on a first-principles model Based on the modelling of (the kinetic rate law) A using Gaussian functions Depends on a limited number Depends on a large number of of kinetic parameters, parameters θ , which are e.g. rate constants k (1 x nr ) difficult to determine Requires a subsequent modelling of C to determine kinetic parameters, e.g. rate constants k (1 x nr ) Chemometric Methods for the Kinetic Hard-modelling of Spectroscopic Data

  9. Fitting method used in Parts 2 and 3 � Direct fitting by modelling concentrations ( C ) 2 ( ) − min Y C k A modelled k � using implicit and explicit calibration of the pure component spectra ( A ) ( ) + = � Implicit calibration: A C k Y modelled (i.e. calibration-free) ( ) + = � Explicit calibration: A C Y calibration (also called Strategy 2) Chemometric Methods for the Kinetic Hard-modelling of Spectroscopic Data

  10. Modelling concentration profiles using the rate law A B C D A B C D A B C D ⎧ ⎪ + ⎯⎯ → k A B C -1 -1 1 0 1 1 0 0 1 0 0 1 0 ⎪ - [ ] = ⎨ = k k k 1 0 1 0 -1 0 -1 1 0 0 0 1 ⎪ + 1 2 ⎯⎯ → k A C D ⎪ 2 ⎩ P ( nr x ns ) E ( nr x ns ) N ( nr x ns ) nr = 2 kinetic rate laws ns = 4 concentration profiles (System of ODE) ⎧ ⎪ ⎧ d x ⎪ d c d x d x d x d x ⎪ ⎪ = e e e e = t,1 1 1 = + =− ⋅ − ⋅ ⎪ k c c c c k c c t, A t,1 t,2 t,1 t,2 1,1 1,2 1,3 1,4 n n 1 1 ⎪ ⎪ 1 t, A t, B t, C t, D 1 t, A t, B ⎪ ⎪ 1,1 2,1 d t d t d t d t d t d t ⎪ ⎨ ⎪ d c d x d x d x d x ⎪ ⎪ d x ⎪ = + =− ⋅ + ⋅ t, B t,1 t,2 t,1 t,2 ⎪ n n 1 0 = e e e e = ⎪ t,2 1 1 k c c c c k c c ⎪ 2,1 2,2 2,3 2,4 ⎪ 1,2 2,2 ⎪ d t d t d t d t d t 2 t, A t, B t, C t, D 2 t, A t, C ⎨ ⎪ ⎩ d t ⎪ d c d x d x d x d x ⎪ = + = ⋅ − ⋅ t, C t,1 t,2 t,1 t,2 n n 1 1 ⎪ ⎪ 1,3 2,3 Numerical integration d t d t d t d t d t ⎪ ⎪ d c d x d x d x d x ⎡ ⎤ = ⎣ ⎪ C c c c c = + = ⋅ + ⋅ t, D t,1 t,2 t,1 t,2 ⎦ ⎪ n n 0 1 t, A t, B t, C t, D ⎪ 1,4 2,4 ⎪ ⎩ d t d t d t d t d t The System of ODE is integrated with initial ⎡ ⎤ = ⎣ concentrations c c c c c ⎦ 0 0, A 0, B 0, C 0, D Chemometric Methods for the Kinetic Hard-modelling of Spectroscopic Data

  11. Modelling concentration profiles using the rate law A B C D A B C D A B C D ⎧ ⎪ + ⎯⎯ → k A B C -1 -1 1 0 1 1 0 0 1 0 0 1 0 ⎪ - [ ] = ⎨ = k k k 1 0 1 0 -1 0 -1 1 0 0 0 1 ⎪ + 1 2 ⎯⎯ → k A C D ⎪ 2 ⎩ P ( nr x ns ) E ( nr x ns ) N ( nr x ns ) nr = 2 kinetic rate laws ns = 4 concentration profiles (System of ODE) ⎧ ⎪ ⎧ d x ⎪ d c d x d x d x d x ⎪ ⎪ = e e e e = t,1 1 1 = + =− ⋅ − ⋅ ⎪ k c c c c k c c t, A t,1 t,2 t,1 t,2 1,1 1,2 1,3 1,4 n n 1 1 ⎪ ⎪ 1 t, A t, B t, C t, D 1 t, A t, B ⎪ ⎪ 1,1 2,1 d t d t d t d t d t d t ⎪ ⎨ ⎪ d c d x d x d x d x ⎪ ⎪ d x ⎪ = + =− ⋅ + ⋅ t, B t,1 t,2 t,1 t,2 ⎪ n n 1 0 = e e e e = ⎪ t,2 1 1 k c c c c k c c ⎪ 2,1 2,2 2,3 2,4 ⎪ 1,2 2,2 ⎪ d t d t d t d t d t 2 t, A t, B t, C t, D 2 t, A t, C ⎨ ⎪ ⎩ d t ⎪ d c d x d x d x d x ⎪ = + = ⋅ − ⋅ t, C t,1 t,2 t,1 t,2 n n 1 1 ⎪ ⎪ 1,3 2,3 Numerical integration d t d t d t d t d t ⎪ ⎪ d c d x d x d x d x ⎡ ⎤ = ⎣ ⎪ C c c c c = + = ⋅ + ⋅ t, D t,1 t,2 t,1 t,2 ⎦ ⎪ n n 0 1 t, A t, B t, C t, D ⎪ 1,4 2,4 ⎪ ⎩ d t d t d t d t d t The System of ODE is integrated with initial ⎡ ⎤ = ⎣ concentrations c c c c c ⎦ 0 0, A 0, B 0, C 0, D Chemometric Methods for the Kinetic Hard-modelling of Spectroscopic Data

  12. Modelling concentration profiles using the rate law A B C D A B C D A B C D ⎧ ⎪ + ⎯⎯ → k A B C -1 -1 1 0 1 1 0 0 1 0 0 1 0 ⎪ - [ ] = ⎨ = k k k 1 0 1 0 -1 0 -1 1 0 0 0 1 ⎪ + 1 2 ⎯⎯ → k A C D ⎪ 2 ⎩ P ( nr x ns ) E ( nr x ns ) N ( nr x ns ) nr = 2 kinetic rate laws ns = 4 concentration profiles (System of ODE) ⎧ ⎪ ⎧ d x ⎪ d c d x d x d x d x ⎪ ⎪ = e e e e = t,1 1 1 = + =− ⋅ − ⋅ ⎪ k c c c c k c c t, A t,1 t,2 t,1 t,2 1,1 1,2 1,3 1,4 n n 1 1 ⎪ ⎪ 1 t, A t, B t, C t, D 1 t, A t, B ⎪ ⎪ 1,1 2,1 d t d t d t d t d t d t ⎪ ⎨ ⎪ d c d x d x d x d x ⎪ ⎪ d x ⎪ = + =− ⋅ + ⋅ t, B t,1 t,2 t,1 t,2 ⎪ n n 1 0 = e e e e = ⎪ t,2 1 1 k c c c c k c c ⎪ 2,1 2,2 2,3 2,4 ⎪ 1,2 2,2 ⎪ d t d t d t d t d t 2 t, A t, B t, C t, D 2 t, A t, C ⎨ ⎪ ⎩ d t ⎪ d c d x d x d x d x ⎪ = + = ⋅ − ⋅ t, C t,1 t,2 t,1 t,2 n n 1 1 ⎪ ⎪ 1,3 2,3 Numerical integration d t d t d t d t d t ⎪ ⎪ d c d x d x d x d x ⎡ ⎤ = ⎣ ⎪ C c c c c = + = ⋅ + ⋅ t, D t,1 t,2 t,1 t,2 ⎦ ⎪ n n 0 1 t, A t, B t, C t, D ⎪ 1,4 2,4 ⎪ ⎩ d t d t d t d t d t The System of ODE is integrated with initial ⎡ ⎤ = ⎣ concentrations c c c c c ⎦ 0 0, A 0, B 0, C 0, D Chemometric Methods for the Kinetic Hard-modelling of Spectroscopic Data

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend