charge radii and higher electromagnetic moments with
play

CHARGE RADII AND HIGHER ELECTROMAGNETIC MOMENTS WITH LATTICE QCD IN - PowerPoint PPT Presentation

T H E 3 4 T H I N T E R N AT I O N A L S Y M P O S I U M O N L AT T I C E G AU G E T H E O R I E S U N I V E R S I T Y O F S O U T H A M P TO N , J U LY 2 4 - 3 0 , 2 0 1 6 CHARGE RADII AND HIGHER ELECTROMAGNETIC MOMENTS WITH LATTICE


  1. T H E 3 4 T H I N T E R N AT I O N A L S Y M P O S I U M O N L AT T I C E G AU G E T H E O R I E S U N I V E R S I T Y O F S O U T H A M P TO N , J U LY 2 4 - 3 0 , 2 0 1 6 CHARGE RADII AND HIGHER ELECTROMAGNETIC MOMENTS WITH LATTICE QCD IN NONUNIFORM BACKGROUND FIELDS Z O H R E H DAVO U D I M I T ZD and W. Detmold, Phys. Rev. D 92, 074506 (2015), ZD and W. Detmold, Phys. Rev. D 93, 014509 (2016).

  2. E L E C T R O M A G N E T I C E F F E C T S I N S T R O N G LY I N T E R A C T I N G S Y S T E M S 1 ) D Y N A M I C A L P H O T O N S d ~ d ~ A A G A U S S ’ S L A W + P E R I O D I C I T Y ? Lucini, et, al., JHEP02(2016)076. Hayakawa and Uno, Prog. Theor. Phys. 120, 413 (2008) Endres, et, al., to appear in PRL, arXiv: ZD, M. J. Savage, Phys. Rev. D 90, 054503 (2014) 1507.08916 [hep-lat]. Borsanyi, et al., Science 347:1452-1455 (2015).

  3. E L E C T R O M A G N E T I C E F F E C T S I N S T R O N G LY I N T E R A C T I N G S Y S T E M S 2 ) C L A S S I C A L E L E C T R O M A G N E T I S M d ~ d ~ A A B A C K G R O U N D F I E L D S + P E R I O D I C I T Y G. ’t Hooft, Nuclear Physics B 153, 141 (1979). J. Smit and J. C. Vink, Nucl.Phys. B286, 485 (1987). M. Al-Hashimi and U.-J. Wiese, Annals Phys. 324, 343 (2009).

  4. S O M E R E C E N T S TAT E - O F - T H E - A R T A P P L I C AT I O N S F R O M L AT T I C E Q C D np → d γ Images by W. Detmold Beane, at al. [NPLQCD collaboration], Phys. Rev. Lett. 115, 132001 (2015).

  5. S O M E R E C E N T S TAT E - O F - T H E - A R T A P P L I C AT I O N S F R O M L AT T I C E Q C D np → d γ A N E F F E C T I V E F I E L D T H E O RY R E S U LT Beane and Savage, Nucl.Phys. A694, 511 (2001). .2 � N E E D S L AT T I C E Q C D I N P U T L di ackgr .1 / 51 π L 1 .0 � Beane, at al. [NPLQCD collaboration], Phys. Rev. Lett. 115, 132001 (2015).

  6. S O M E R E C E N T S TAT E - O F - T H E - A R T A P P L I C AT I O N S F R O M L AT T I C E Q C D np → d γ S E T U P A B A C K G R O U N D M A G N E T I C F I E L D Detmold and Savage, Nucl.Phys. A743, 170 (2004). Beane, at al. [NPLQCD collaboration], Phys. Rev. Lett. 115, 132001 (2015).

  7. M O R E P H Y S I C S W I T H B A C K G R O U N D F I E L D S ? 1 ) E M C H A R G E R A D I U S =================================================== 2 ) E L E C T R I C Q U A D R U P O L E M O M E N T A. 4 ) A X I A L B A C K G R O U N D F I E L D S 3 ) F O R M FA C T O R S n p p p e + ν e Detmold, Phys.Rev. D71, 054506 (2005)

  8. I M P L E M E N TAT I O N O F U ( 1 ) B A C K G R O U N D G A U G E F I E L D S O N A P E R I O D I C H Y P E R C U B I C L AT T I C E ZD and W. Detmold, Phys. Rev. D 92, 074506 (2015)

  9. P E R I O D I C I M P L E M E N TAT I O N O F N O N U N I F O R M B A C K G R O U N D F I E L D S ✓ ◆ − E 0 h x 3 i L ) 2 , 0 A µ = 2 ( x 3 − E = E 0 x 3 ˆ x 3 → L ( T, L ) U = e ie ˆ R Q A µ ( z ) dz µ ( T, 0) (0 , 0) x 3 1 t

  10. P E R I O D I C I M P L E M E N TAT I O N O F N O N U N I F O R M B A C K G R O U N D F I E L D S ✓ ◆ − E 0 h x 3 i L ) 2 , 0 A µ = 2 ( x 3 − E = E 0 x 3 ˆ x 3 → L ( T, L ) U = e ie ˆ R Q A µ ( z ) dz µ ( T, 0) (0 , 0) x 3 1 e − ie ˆ t QE 0 a t / 2

  11. P E R I O D I C I M P L E M E N TAT I O N O F N O N U N I F O R M B A C K G R O U N D F I E L D S ✓ ◆ − E 0 h x 3 i L ) 2 , 0 A µ = 2 ( x 3 − E = E 0 x 3 ˆ x 3 → L ( T, L ) U = e ie ˆ R Q A µ ( z ) dz µ ( T, 0) (0 , 0) x 3 1 e − ( L − a s ) 2 ie ˆ e − ie ˆ QE 0 a t / 2 t QE 0 a t / 2

  12. P E R I O D I C I M P L E M E N TAT I O N O F N O N U N I F O R M B A C K G R O U N D F I E L D S ✓ ◆ − E 0 h x 3 i L ) 2 , 0 A µ = 2 ( x 3 − E = E 0 x 3 ˆ x 3 → L ( T, L ) 1 U = e ie ˆ R Q A µ ( z ) dz µ 1 ( T, 0) (0 , 0) x 3 1 e − ( L − a s ) 2 ie ˆ e − ie ˆ QE 0 a t / 2 t QE 0 a t / 2

  13. P E R I O D I C I M P L E M E N TAT I O N O F N O N U N I F O R M B A C K G R O U N D F I E L D S ✓ ◆ − E 0 h x 3 i L ) 2 , 0 A µ = 2 ( x 3 − E = E 0 x 3 ˆ x 3 → L ( T, L ) 1 = e ie ˆ QE 0 a t a s / 2 1 ( T, 0) (0 , 0) x 3 1 e − ( L − a s ) 2 ie ˆ e − ie ˆ QE 0 a t / 2 t QE 0 a t / 2

  14. P E R I O D I C I M P L E M E N TAT I O N O F N O N U N I F O R M B A C K G R O U N D F I E L D S ✓ ◆ − E 0 h x 3 i L ) 2 , 0 A µ = 2 ( x 3 − E = E 0 x 3 ˆ x 3 → L ( T, L ) 1 = e ie ˆ QE 0 a t a s / 2 1 ( T, 0) (0 , 0) x 3 1 e − ( L − a s ) 2 ie ˆ e − ie ˆ QE 0 a t / 2 t QE 0 a t / 2

  15. P E R I O D I C I M P L E M E N TAT I O N O F N O N U N I F O R M B A C K G R O U N D F I E L D S ✓ ◆ − E 0 h x 3 i L ) 2 , 0 A µ = 2 ( x 3 − E = E 0 x 3 ˆ x 3 → L P E R I O D I C B C ( T, L ) 1 = e ie ˆ QE 0 a t a s / 2 1 ( T, 0) (0 , 0) x 3 1 e − ( L − a s ) 2 ie ˆ e − ie ˆ QE 0 a t / 2 t QE 0 a t / 2

  16. P E R I O D I C I M P L E M E N TAT I O N O F N O N U N I F O R M B A C K G R O U N D F I E L D S ✓ ◆ − E 0 h x 3 i L ) 2 , 0 A µ = 2 ( x 3 − E = E 0 x 3 ˆ x 3 → L P E R I O D I C B C M O D I F I E D L I N K ( T, L ) × e − ie ˆ QE 0 L 2 t/ 2 1 = e ie ˆ QE 0 a t a s / 2 1 ( T, 0) (0 , 0) x 3 1 e − ( L − a s ) 2 ie ˆ e − ie ˆ QE 0 a t / 2 t QE 0 a t / 2

  17. P E R I O D I C I M P L E M E N TAT I O N O F N O N U N I F O R M B A C K G R O U N D F I E L D S ✓ ◆ − E 0 h x 3 i L ) 2 , 0 A µ = 2 ( x 3 − E = E 0 x 3 ˆ x 3 → L P E R I O D I C B C M O D I F I E D L I N K ( T, L ) × e − ie ˆ QE 0 L 2 t/ 2 1 = e ie ˆ QE 0 a t a s / 2 1 ( T, 0) (0 , 0) x 3 1 e − ( L − a s ) 2 ie ˆ e − ie ˆ QE 0 a t / 2 t QE 0 a t / 2

  18. P E R I O D I C I M P L E M E N TAT I O N O F N O N U N I F O R M B A C K G R O U N D F I E L D S ✓ ◆ − E 0 h x 3 i L ) 2 , 0 A µ = 2 ( x 3 − E = E 0 x 3 ˆ x 3 → L P E R I O D I C B C e ie ˆ QE 0 L 2 T/ 2 = 1 M O D I F I E D L I N K ( T, L ) × e − ie ˆ QE 0 L 2 t/ 2 1 = e ie ˆ QE 0 a t a s / 2 1 ( T, 0) (0 , 0) x 3 1 e − ( L − a s ) 2 ie ˆ e − ie ˆ QE 0 a t / 2 t QE 0 a t / 2

  19. P E R I O D I C I M P L E M E N TAT I O N O F N O N U N I F O R M B A C K G R O U N D F I E L D S ✓ ◆ − E 0 h x 3 i L ) 2 , 0 A µ = 2 ( x 3 − E = E 0 x 3 ˆ x 3 → L P E R I O D I C B C e ie ˆ QE 0 L 2 T/ 2 = 1 M O D I F I E D L I N K ( T, L ) × e − ie ˆ QE 0 L 2 t/ 2 1 4 π n E 0 = e ˆ QL 2 T Q U A N T I Z AT I O N C O N D I T I O N F O R T H E S L O P E O F T H E F I E L D = e ie ˆ QE 0 a t a s / 2 1 ( T, 0) (0 , 0) x 3 1 e − ( L − a s ) 2 ie ˆ e − ie ˆ QE 0 a t / 2 t QE 0 a t / 2

  20. P E R I O D I C I M P L E M E N TAT I O N O F N O N U N I F O R M B A C K G R O U N D F I E L D S E = E 0 x 3 ˆ x 3 N E U T R A L P I O N C O R R E L AT I O N F U N C T I O N C ( x 3 , τ ) ⌘ log C ( x 3 , τ + 1) , No modified links - Quantized No modified links - Nonquantized x (src) = 9 - 2.0 3 BOUNDARY - 2.1 - 2.2 - 2.3 - 2.4 11 3 5 6 7 8 9 10 0 1 2 4 x 3 − x (src) 3

  21. P E R I O D I C I M P L E M E N TAT I O N O F N O N U N I F O R M B A C K G R O U N D F I E L D S E = E 0 x 3 ˆ x 3 N E U T R A L P I O N C O R R E L AT I O N F U N C T I O N C ( x 3 , τ ) ⌘ log C ( x 3 , τ + 1) , Modified links - Quantized Modified links - Nonquantized x (src) = 9 - 2.0 3 BOUNDARY - 2.1 - 2.2 - 2.3 - 2.4 2 4 6 8 10 12 11 3 5 6 7 8 9 10 0 1 2 4 x 3 − x (src) 3

  22. P E R I O D I C I M P L E M E N TAT I O N O F N O N U N I F O R M B A C K G R O U N D F I E L D S M O D I F I E D L I N K S Y ( x ) × e ie ˆ e ie ˆ Q [ A ν ( x µ =0 ,x ν ) � e A ν ( x µ = L µ ,x ν ) ] f µ, ν ( x ν ) ⇥ δ xµ,Lµ − aµ U ( QCD ) ( x ) → U ( QCD ) QA µ ( x ) a µ × µ µ ν 6 = µ i W I T H L I N K F U N C T I O N S S AT I S F Y I N G h i h i A ν ( x µ = 0 , x ν + a ν ) − e A ν ( x µ = 0 , x ν ) − e A ν ( x µ = L µ , x ν + a ν ) f µ, ν ( x ν + a ν ) = A ν ( x µ = L µ , x ν ) ( f µ, ν ( x ν ) + a ν ) h . W. Detmold, Phys.Rev. D71, 054506 (2005) Q U A N T I Z AT I O N C O N D I T I O N S 2 3 " L ν � a ν # L µ � a µ Y Y e � ie ˆ e ie ˆ Q [ A µ ( x µ ,x ν =0) � e A µ ( x µ ,x ν = L ν ) ] a µ Q [ A ν ( x µ =0 ,x ν ) � e A ν ( x µ = L µ ,x ν ) ] a ν 4 5 = 1 . x µ =0 x ν =0 C H A R G E R A D I U S - Q U A D R U P O L E M O M E N T L I N E A R LY VA RY I N G F I E L D S O S C I L L AT O RY F I E L D S F O R M FA C T O R S VA R I O U S S PA C E / T I M E D E P E N D E N C E S P I N P O L A R I Z A B I L I T I E S O F N U C L E O N S

  23. P E R I O D I C I M P L E M E N TAT I O N O F N O N U N I F O R M B A C K G R O U N D F I E L D S ✓ ia ◆ O S C I L L AT O RY F I E L D S → E = ae iq 3 x 3 ˆ e iq 3 x 3 , 0 , 0 , 0 A µ = ( A 0 , − A ) = x 3 q 3 P E R I O D I C B C e − e ˆ q 3 (1 − e iq 3 L ) T = 1 Qa M O D I F I E D L I N K ( T, L ) 1 × e − e ˆ q 3 (1 − e iq 3 L ) t Qa q 3 = 2 π n L Q U A N T I Z AT I O N C O N D I T I O N F O R T H E F R E Q U E N C Y O F T H E F I E L D As in: Bali and Endrodi, PhysRevD.92.054506 O R 1 Q U A N T I Z AT I O N C O N D I T I O N F O R T H E A M P L I T U D E O F T H E F I E L D ( T, 0) (0 , 0) a (Im) = π q 3 n 0 , a 1 e ˆ QT e − e ˆ q 3 e iq 3 a t e − e ˆ Qa Qa ( L − as ) e iq 3 a t x 3 q 3 sin( q 3 L ) , a (Re) = − 1 − cos( q 3 L ) a (Im) t

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend