characterizing the spatial variability examples from the
play

Characterizing the Spatial Variability: examples from the Earth and - PowerPoint PPT Presentation

Characterizing the Spatial Variability: examples from the Earth and Mars Luis Samaniego and Andr as B ardossy Presented at GI Days 2008 June 16, M unster Outline 1. Motivation 2. Methods to describe the spatial variability 3.


  1. Characterizing the Spatial Variability: examples from the Earth and Mars Luis Samaniego and Andr´ as B´ ardossy Presented at GI Days 2008 June 16, M¨ unster

  2. Outline 1. Motivation 2. Methods to describe the spatial variability 3. Landscape simulations 4. Conclusions 1

  3. Motivation 1. How to analyze the spatial variability of an observable? e.g.: ■ Precipitation ■ Terrain elevation ■ Soil moisture 2

  4. Motivation 1. How to analyze the spatial variability of an observable? e.g.: ■ Precipitation ■ Terrain elevation ■ Soil moisture 2. How to relate it with explanatory variables (i.e. dependence)? 2

  5. Motivation 1. How to analyze the spatial variability of an observable? e.g.: ■ Precipitation ■ Terrain elevation ■ Soil moisture 2. How to relate it with explanatory variables (i.e. dependence)? 3. How to use this knowledge in practical applications? e.g.: ■ Weather generators ■ Simulation / interpolation in Geostatistics 2

  6. Part II Methods to describe the spatial variability

  7. Observable in geophysics z ( x ) = is a realization of a underlining random function Z ( x ) 4

  8. Observable in geophysics z ( x ) = is a realization of a underlining random function Z ( x ) Known: ■ Its variability is a consequence of interactions between natural process ⇒ deterministic ■ Generating processes are sensitive to boundary conditions ■ Exhaustive process description is not possible with known physical/chemical laws 4

  9. Observable in geophysics z ( x ) = is a realization of a underlining random function Z ( x ) Known: ■ Its variability is a consequence of interactions between natural process ⇒ deterministic ■ Generating processes are sensitive to boundary conditions ■ Exhaustive process description is not possible with known physical/chemical laws Unknown: ■ Conditions under which these process took place 4

  10. Observable in geophysics z ( x ) = is a realization of a underlining random function Z ( x ) Known: ■ Its variability is a consequence of interactions between natural process ⇒ deterministic ■ Generating processes are sensitive to boundary conditions ■ Exhaustive process description is not possible with known physical/chemical laws Unknown: ■ Conditions under which these process took place ⇒ Stochastic methods commonly used to extract the spatial dependence 4

  11. Working hypotheses ■ Second order stationarity � Expected value of Z ( x ) E [ Z ( x )] = m � Covariance of two random variables h apart �� �� �� C ( h ) = E Z ( x + h ) − m Z ( x ) − m ■ Intrinsic � Variance of two random variables h apart γ ( h ) = 1 �� � 2 � Z ( x + h ) − Z ( x ) 2 E 5

  12. An example 1 0.8 γ (h) [m²] 0.6 0.4 0.2 0 300 n = 100 000 var(h) x10 3 [m²] 200 100 0 0 10000 20000 30000 h [m] Variogram cloud and experimental variogram from a DEM of the Neckar region (50 × 50) m 6

  13. Shortcomings of the covariance function / variogram ■ Describe the spatial dependence as an integral over the whole range of values 7

  14. Shortcomings of the covariance function / variogram ■ Describe the spatial dependence as an integral over the whole range of values ■ Does not take into account that extremes can have a different spatial dependence structure from the central values (Journel and Alabert, 1989) 7

  15. Shortcomings of the covariance function / variogram ■ Describe the spatial dependence as an integral over the whole range of values ■ Does not take into account that extremes can have a different spatial dependence structure from the central values (Journel and Alabert, 1989) ■ Strongly influenced by the marginal distribution (B´ ardossy, WRR, 2006) 7

  16. Shortcomings of the covariance function / variogram ■ Describe the spatial dependence as an integral over the whole range of values ■ Does not take into account that extremes can have a different spatial dependence structure from the central values (Journel and Alabert, 1989) ■ Strongly influenced by the marginal distribution (B´ ardossy, WRR, 2006) ■ ... What to do? 7

  17. Spatial copula ■ Bivariate distribution function on the unit square with uniform marginals ■ Denotes the pure effect of dependence (Skar 1959, Nelsen 1999) � � � �� � � � � � � � C s ( h , u, v ) = P Z ( x ) < u ; F z Z ( x + h ) = C s Z ( x ) Z ( x + h ) F z < v F z , F z 8

  18. Spatial copula ■ Bivariate distribution function on the unit square with uniform marginals ■ Denotes the pure effect of dependence (Skar 1959, Nelsen 1999) � � � �� � � � � � � � C s ( h , u, v ) = P Z ( x ) < u ; F z Z ( x + h ) = C s Z ( x ) Z ( x + h ) F z < v F z , F z Examples: 1.00 250.00 0.90 100.00 0.80 200.00 90.00 1.15 80.00 0.70 70.00 1.10 0.60 150.00 60.00 1.05 50.00 0.50 1.00 40.00 0.40 100.00 30.00 0.95 20.00 0.30 0.90 10.00 0.20 50.00 0.00 0.85 0.10 0.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0.00 50.00 100.00 150.00 200.00 250.00 Random field Copula density, h=2 8

  19. Spatial copula ■ Bivariate distribution function on the unit square with uniform marginals ■ Denotes the pure effect of dependence (Skar 1959, Nelsen 1999) � � � �� � � � � � � � C s ( h , u, v ) = P Z ( x ) < u ; F z Z ( x + h ) = C s Z ( x ) Z ( x + h ) F z < v F z , F z Examples: 1.00 250 0.90 0.04 0.80 200 10.00 9.00 0.03 0.70 8.00 0.60 150 7.00 6.00 0.02 0.50 5.00 4.00 100 0.40 3.00 0.01 0.30 2.00 1.00 50 0.20 0.00 0.00 0.10 0 0.00 0 50 100 150 200 250 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Normal field Copula density, h=4 8

  20. Estimation of an empirical copula Step 1 : Select a spatial domain, e.g. a DEM. 50 20 80 100 80 90 50 25 10 60 0 30 20 40 10 5 DEM 9

  21. Estimation of an empirical copula Step 2 : Estimate its empirical distribution function F n ( z ) . Empirical Distribution Function of z 1 0.8 0.6 F(z) 0.4 0.2 0 0 25 50 75 100 z 50 20 80 100 80 90 50 25 10 60 0 30 20 5 40 10 DEM 10

  22. Estimation of an empirical copula Step 3 : Built a grid having the corresponding F n ( z ) values. Empirical Distribution Function of z 1 0.8 0.6 F(z) 0.4 0.2 0 0 25 50 75 100 z 0.38 0. 69 0 .8 8 1 .00 50 20 80 100 0.94 0.88 0.69 0.44 80 90 50 25 0.06 0.25 0.50 0.75 10 60 0 30 0.56 0.38 0.25 0.13 20 5 40 10 Marginal d istribution DEM of the DEM 11

  23. Estimation of an empirical copula Step 4 : Sample N pairs from it: ( u = F n ( z ) , v = F n ( z + h )) 0.38 0.69 0.88 1.00 0.94 0.88 0.69 0.44 0.06 0.25 0.50 0.75 0.56 0.38 0.25 0.13 Marginal d istribution of the DEM 12

  24. Estimation of an empirical copula Step 5 : Store all pairs ( u, v ) and ( v, u ) . Tally the frequencies 1 0.38 0.69 0.88 1.00 0.8 0.94 0.88 0.69 0.44 0.6 v 0.4 0.06 0.25 0.50 0.75 0.2 0.56 0.38 0.25 0.13 0 0 0.2 0.4 0.6 0.8 1 u Marginal d istribution of the DEM 13

  25. Estimation of an empirical copula Step 6 : Normalize both marginals and calculate the copula density c s ( u, v ) . 1 0.38 0.69 0.88 1.00 0.8 0.94 0.88 0.69 0.44 0.6 v 0.4 0.06 0.25 0.50 0.75 0.2 0.56 0.38 0.25 0.13 0 0 0.2 0.4 0.6 0.8 1 u Marginal d istribution of the DEM Σ = 1 1 Σ = 1 0.8 4 0.6 3 v 2 0.4 1 0 0.2 0 0 0.2 0.4 0.6 0.8 1 u E. copula density h=1 14

  26. Part II Examples

  27. Variation of the spatial dependency with h ~ 5 km 1 10.5 0.8 9 7 0.6 5 v 4 0.4 3 2 1 0.2 0 0 0 0.2 0.4 0.6 0.8 1 Andean landscape u 3 h = ~ 1.0 km Disorder r = ~ 0.97 2 E 1 Order 0 0.2 0.4 0.6 0.8 1 u 16

  28. Variation of the spatial dependency with h ~ 5 km 1 10.5 0.8 9 7 0.6 5 v 4 0.4 3 2 1 0.2 0 0 0 0.2 0.4 0.6 0.8 1 Andean landscape u 3 h = ~ 2.5 km Disorder r = ~ 0.89 2 E 1 Order 0 0.2 0.4 0.6 0.8 1 u 17

  29. Variation of the spatial dependency with h ~ 5 km 1 10.5 0.8 9 7 0.6 5 v 4 0.4 3 2 1 0.2 0 0 0 0.2 0.4 0.6 0.8 1 Andean landscape u 3 h = ~ 5.0 km Disorder r = ~ 0.69 2 E 1 Order 0 0.2 0.4 0.6 0.8 1 u 18

  30. Relation of the spatial copula and the geomorphologic genesis ~ 120 km 1 10.5 0.8 8 0.6 v 5 0.4 2 0.2 0 0 0 0.2 0.4 0.6 0.8 1 u Xanthe Terra (Mars) h = ~ 20 km r = ~ 0.89 19

  31. Relation of the spatial copula and the geomorphologic genesis ~ 5 km 1 10.5 9 0.8 7.5 0.6 6 v 4.5 0.4 3 0.2 1.5 0 0 0 0.2 0.4 0.6 0.8 1 u Cotopaxi Volcano (Ecuador) h = ~ 2.5 km r = ~ 0.88 20

  32. Relation of the spatial copula and the geomorphologic genesis ~ 2 km 1 10.5 9 0.8 7.5 0.6 6 v 4.5 0.4 3 0.2 1.5 0 0 0 0.2 0.4 0.6 0.8 1 u Headwater Neckar (Germany) h = ~ 1.00 km r = ~ 0.86 21

  33. Relation of the spatial copula and the geomorphologic genesis ~ 10 km 1 10.5 9 0.8 7.5 0.6 6 v 4.5 0.4 3 0.2 1.5 0 0 0 0.2 0.4 0.6 0.8 1 u Marzuq Desert (Libya) h = ~ 0.36 km r = ~ 0.89 22

  34. Shannon’s entropy of the spatial copulas � E ( u ) = − c s ( u, u 2 ) log c s ( u, u 2 ) du 2 (1) u 2 Neckar Disorder Cotopaxi 3 Sahara Xanthe Terra (Mars) Random field Gaussian field 2 E 1 Order 0 0 0.2 0.4 0.6 0.8 1 u 23

  35. Part III Landscape simulations

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend