ceftazidime avibactam
play

Ceftazidime / avibactam Michel Arthur Laboratoire de Recherche - PowerPoint PPT Presentation

Ceftazidime / avibactam Michel Arthur Laboratoire de Recherche Molculaire We're gonna geed a bigger boat Spellberg B, Bonomo RA sur les Antibiotiques Centre de Recherches des Cordeliers INSERM UMR S 1138 Equipe 12 A new generation of


  1. Ceftazidime / avibactam Michel Arthur Laboratoire de Recherche Moléculaire “We're gonna geed a bigger boat” Spellberg B, Bonomo RA sur les Antibiotiques Centre de Recherches des Cordeliers INSERM UMR S 1138 Equipe 12

  2. A new generation of β -lactamase inhibitors: Structure 1 st generation : β -lactam 2 nd generation : Diazabicyclooctane Clavulanate Sulbactam Avibactam Tazobactam

  3. Different modes of action E S ES ES* E S* Detoxified β -lactamase + β -lactamase + Substrate Non-covalent Acylenzyme β -lactam complex β -lactam Imipenem HO HO Bla Bla Bla H 2 O E + I EI EI* E I* Non-covalent Acylenzyme + H 2 O β -lactamase + Detoxified complex inhibitor I = Inhibitor Clavulanate Bla Secondary acylenzyme + CO 2 E + I EI* E I* EI Avibactam Acylenzyme + H 2 O β -lactamase + Non-covalent Detoxified complex inhibitor Bla

  4. Inactivation spectrum of avibactam β -lactamase Questions to be addressed:  Are there naturally- occurring “resistant” class A β -lactamases? Class A Active  Are variations in the efficacy of avibactam and clavulanate Class B Inactive positively correlated? negatively correlated? Class C Active independent? Class D Variable  Is acquisition of resistance to avibactam- β -lactam combinations possible following changes in the sequence of the β -lactamases under the selective pressure of the drugs?

  5. Naturally occurring β -lactamases not inactivated by avibactam β -lactamase Inhibitor BlaC M . tuberculosis Bla Mab M . abscessus k 2 / K i = 230,000 M -1 s -1 Rapid inactivation No inactivation, Hydrolysis Clavulanate No deacylation k - 2 = 0 k cat / K m = 210,000 M -1 s -1 Insignificant hydrolysis k 3 = 0.0001 s -1 Rapid inactivation Slow inactivation k 2 / K i = 480,000 M -1 s -1 Avibactam k 2 / K i = 24 M -1 s -1 k -2 = 0.00002 s -1 k 1 k 2 k 3 Association Acylation Hydrolysis Red: Full “ i rreversible” E + I* E + I EI EI* inactivation Dissociation Deacylation Blue : Partial or no k - 1 k - 2 inactivation K i = k -1 / k 1

  6. β β Structural data provided a clue β -lactamase Motif Avibactam Clavulanate Inactive Bla Mab SDN Active BlaC Inactive Active SDG SDN or SDG Catalytic serine (S70) acylated by clavulanate 73 K/K 70 S/S 276 K/E 132 N/G 237 G/T 166 E/E 105 W/I Bla Mab M . abscessus BlaC M . tuberculosis

  7. Impact of SDN ↔ SDG substitutions Efficacy of clavulanate hydrolysis 6 Only Avi Both active Log( k cat / K m ) 5 Bla Mab (N 132 ) 4 3 Only Clav Both active 2 1 BlaC (G 132 ) 0 0 1 2 3 4 5 6 Efficacy of inactivation by avibactam Log( k 2 / K i )

  8. Impact of SDN ↔ SDG substitutions Efficacy of clavulanate hydrolysis 6 Only Avi Both active Log( k cat / K m ) 5 Bla Mab (N 132 ) BlaC G 132 N 4 3 Only Clav Both active 2 Bla Mab N 132 G 1 BlaC (G 132 ) 0 0 1 2 3 4 5 6 Efficacy of inactivation by avibactam Log( k 2 / K i )

  9. Conclusions  BlaC is a naturally- occurring avibactam “resistant” class A β -lactamase  Variations in the efficacy of avibactam and clavulanate are inversely correlated and determined by the SDN versus SDG motif  SDN → SDG acquisition of avibactam resistance (but increased susceptibility to clavulanate) → Do these conclusions apply to β -lactamases from Enterobacteria?

  10. Impact of SDN ↔ SDG substitutions Efficacy of clavulanate hydrolysis 6 Only Avi Both active Bla Mab N 132 Log( k cat / K m ) KPC-2 N 132 5 CTX-M-15 N 132 4 3 Both active 2 N 132 G N 132 G 1 N 132 G Only Clav 0 0 1 2 3 4 5 6 Efficacy of inactivation by avibactam Log( k 2 / K i )

  11. Conclusion  The SDN → SDG substitution has similar impacts on the spectrum of inhibition of distantly related Class A β -lactamases from mycobacteria and enterobacteria → Does this substitution lead to resistance to β -lactam/inhibitor combinations?

  12. MIC of amoxicillin (S) against E. coli producing Bla Mab (E) with or without avibactam (I) β -lactamase MIC (µg/ml) Active (black) and inactive (white) pathways PBP inactivation None 2 S PBP inactivation Bla Mab E + S S ES ES* + H 2 O E + S* >512 PBP inactivation S ES ES* + H 2 O E + S* S + Bla Mab + Avibactam 4 E + I EI EI* PBP inactivation Bla Mab N 132 G >512 E S ES ES* + H 2 O E + S* + S PBP inactivation S ES ES* + H 2 O E + S* S + Bla Mab N 132 G + Avi 64 E + I EI EI*

  13. Emergence of ceftazidime-avibactam resistance in enterobacteria (Resistance: MIC of ceftazidime > 8 µg/ml in the presence of 4 µg/ml of avibactam)  In vivo : Emergence of resistance to ceftazidime-avibactam in 8% (3/37) of the patients infected with carbapenem-resistant Enterobacteriaceae and treated with the ceftazidime-avibactam combination D 179 Y V 240 G D 179 Y + T 243 M Shields RK, Clin Infect Dis 63:1615 – 8 Antimicrob Agents Chemother 61:e02097-16  In vitro : ca . 2 x 10 -9 (ceftazidime 8 µg/ml + avibactam 4 µg/ml) D 179 Y

  14. Impact of D 179 Y in KPC-2 on the : MIC of β -lactams against E. coli Efficacy* of β -lactam hydrolysis Efficacy of inactivation by avibactam k 2 / K i (M -1 s -1 ) k -2 (s -1 ) KPC-2 D 179 Y β -lactamase β -lactam KPC-2 KPC-2 Ceftazidime 3,700 70 290,000 0.001 KPC-2 D 179 Y 0.4 0.00005 Aztreonam 69,000 Not detected Meropenem 67,000 Not detected k 1 k 2 Imipenem 730,000 Not detected Association Acylation E + I EI EI* Ceftriaxone 250,000 3,500 Dissociation Deacylation k - 1 k - 2 Clavulanate 140,000 Not detected K i = k -1 / k 1 * k cat / K m (M -1 s -1 )

  15. Conclusions  D 179 Y is sufficient for resistance to the combination since it enables the combination of: Sufficient residual ceftazidime hydrolase activity (2%) Very low acylation efficacy by avibactam (0,0001%)  D 179 Y: Abolishes resistance to aztreonam, imipenem, and meropenem Increases the efficacy of β -lactamase inactivation by clavulanate → Alternative therapies for isolates producing KPC D 179 Y? → Combine therapies to prevent emergence of D 179 Y? → Is emergence of resistance to β -lactam/inhibitor combinations possible in other Class A β -lactamases?

  16. CTX-M β -lactamases are refractory to gain of ceftazidime-avibactam resistance  Pre-existing polymorphisms: 9 single amino acid variations in the Ω loop of 172 CTX-M sequences  None was associated with ceftazidime-avibactam resistance but Two of them increased the MIC of ceftazidime (in the absence of avibactam) when introduced in CTX-M-15: P 167 S (4 fold) and L 169 Q (16 fold) Selection cefta + Avi S 130 G  L 169 Q (rare) and D 240 G (only in CTX-M-15 and derivatives) are prerequisites for the emergence of ceftazidime-avibactam resistance

  17. Cytoplasmic membrane 60-80 % Transpeptidase β -lactamase 5 paralogues Peptidoglycan Arabinogalactan Mycolic acid Porin Efflux determinants resistance Avibactam Multiciplicity of β -lactamase inhibitor β -lactam

  18. Cytoplasmic membrane 60-80 % Transpeptidase β -lactamase 5 paralogues Peptidoglycan Arabinogalactan Mycolic acid Porin Efflux avibactam Avibactam Dual role of β -lactamase inhibitor β -lactam

  19. Additional target(s) for avibactam and derivatives Inhibition efficacy ( k 2 / K i M -1 s -1 ) MIC of amoxicillin (against Δ bla ) Strain β -lactamase None Avibactam 15a Avibactam 15a M. abscessus Bla MAb >256 (4) 16 (4) 16 (4) 170,000 22,000 M. tuberculosis BlaC 128 (1) 8 (1) 16 (1) 24 < 5 Organic synthesis of avibactam derivatives S-carbamoylation of 100 Slow-binding inhibition catalytic Cys 442 of L , D -transpeptidases 80 Free enzyme (%) 60 40 20 0 0 20 40 60 80 100 120 Pre-incubation time with avibactam (min) Ldt fm (40 μM ) avibactam (1,000 μM )

  20. “We're gonna need a bigger boat” Spellberg B, Bonomo RA  Chemistry L Iannazzo, M Ethève-Quelquejeu, M Fonvielle, F Bochet  Crystallography I Galley, H van Tilbeurgh, M Fonvielle  Microbiology F Compain, JL Mainardi, E Le Run  Enzymology Z Edoo, F Compain, JE Hugonnet  A more potent “irresistible” inhibitor and/or  Diverse inhibitors (pan resistance to all β -lactam-inhibitor MycWall project combinations is at the very least uncommon)  Formulation of inhibitors independently from β -lactams → access to combinations for therapy (and research!) PhD fellowship to ZE PhD fellowship to ELR

  21. MIC of amoxicillin against E. coli strains producing BlaC from M. tuberculosis E = BlaC S = Amoxicillin β -lactamase MIC (µg/ml) I = Clavulanate PBP inactivation None 2 S PBP inactivation E + S S ES ES* + H 2 O E + S* BlaC 512 PBP inactivation S S ES ES* + H 2 O E + S* + BlaC + Clav 8 E + I EI EI* + H 2 O E + I* PBP inactivation BlaC G 132 N 512 E S ES ES* + H 2 O E + S* S + PBP inactivation S S ES ES* + H 2 O E + S* + BlaC G 132 N + Clav 64 E + I EI EI* + H 2 O E + I*

  22. MIC of amoxicillin against E. coli strains producing BlaC from M. tuberculosis E = Bla Mab S = Amoxicillin β -lactamase MIC (µg/ml) I = Clavulanate PBP inactivation None 2 S PBP inactivation E + S S ES ES* + H 2 O E + S* Bla Mab >512 PBP inactivation S S ES ES* + H 2 O E + S* + Bla Mab + Clav >512 E + I EI EI* + H 2 O E + I* PBP inactivation Bla Mab N 132 G >512 E S ES ES* + H 2 O E + S* S + PBP inactivation S S ES ES* + H 2 O E + S* + Bla Mab N 132 G + Clav 32 E + I EI EI* + H 2 O E + I*

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend