branching form of the resolvent at threshold for discrete
play

Branching form of the resolvent at threshold for discrete Laplacians - PowerPoint PPT Presentation

Branching form of the resolvent at threshold for discrete Laplacians Kenichi ITO (Kobe University) joint work with Arne JENSEN (Aalborg University) 9 October 2016 Introduction: Discrete Laplacian Thresholds generated by critical values For


  1. Branching form of the resolvent at threshold for discrete Laplacians Kenichi ITO (Kobe University) joint work with Arne JENSEN (Aalborg University) 9 October 2016

  2. Introduction: Discrete Laplacian ◦ Thresholds generated by critical values For any function u : Z d → C define △ u : Z d → C by d � � ∑ for n ∈ Z d . ( △ u )[ n ] = u [ n + e j ] + u [ n − e j ] − 2u [ n ] j = 1 The operator H 0 = − △ is bounded and self-adjoint on H = ℓ 2 ( Z d ) . It has spectrum σ ( H 0 ) = σ ac ( H 0 ) = [ 0, 4d ] , and thresholds τ ( H 0 ) = { 0, 4, . . . , 4d } . 1

  3. H = L 2 ( T d ) , T = R / ( 2π Z ) , and define the Fourier transform Let � F : H → � H and its inverse F ∗ : � H → H by ( F u )( θ ) = ( 2π ) − d/2 ∑ e − i nθ u [ n ] , n ∈ Z d ∫ ( F ∗ f )[ n ] = ( 2π ) − d/2 T d e i nθ f ( θ ) d θ, and then F H 0 F ∗ = Θ ( θ ) = 2d − 2 cos θ 1 − · · · − 2 cos θ d . Since ∂ j Θ ( θ ) = 2 sin θ j , the critical points of signature ( p, q ) are { } θ ∈ { 0, π } d ; # { θ j = 0 } = p, # { θ j = π } = q γ ( p, q ) = . Hence the critical values 0, 4d are thresholds of elliptic type, and 4, . . . , 4 ( d − 1 ) are those of hyperbolic type. 2

  4. ◦ Purpose: Asymptotic expansion of resolvent Q. Can we compute an asymptotic expansion of the resolvent R 0 ( z ) = ( H 0 − z ) − 1 ∼ ?? as z → 4q for q = 0, 1, . . . , d ? Note that the resolvent R 0 ( z ) has a convolution kernel: ∫ e i nθ k ( z, n ) = ( 2π ) − d R 0 ( z ) u = k ( z, · ) ∗ u ; Θ ( θ ) − z d θ. T d A. Yes. By localizing around γ ( p, q ) ⊂ T d and changing variables the situation reduces to that for an ultra-hyperbolic operator. • As far as we know, an explicit asymptotics of R 0 ( z ) around a threshold seems to have been open except for 0 and 4d . 3

  5. Ultra-hyperbolic operator (a model operator) Consider an ultra-hyperbolic operator on R d : � = ∂ 2 1 + · · · + ∂ 2 p − ∂ 2 p + 1 − · · · − ∂ 2 p + q ; p, q ≥ 0, d = p + q. The operator H 0 = − � is self-adjoint on H = L 2 ( R d ) with D ( H 0 ) = { u ∈ H ; � u ∈ H in the distributional sense } . It has spectrum  [ 0, ∞ ) if ( p, q ) = ( d, 0 ) ,  σ ( H 0 ) = σ ac ( H 0 ) = (− ∞ , 0 ] if ( p, q ) = ( 0, d ) ,  R otherwise , and a single threshold τ ( H 0 ) = { 0 } . 4

  6. Using the Fourier transform F : H → H and its inverse F ∗ : H → H , we can write F H 0 F ∗ = Ξ ( ξ ) = ξ ′ 2 − ξ ′′ 2 ; ξ = ( ξ ′ , ξ ′′ ) ∈ R p ⊕ R q . The only critical point is ξ = 0 , and the associated critical value, or a threshold 0 is said to be 1. of elliptic type if ( p, q ) = ( d, 0 ) or ( 0, d ) ; 2. of hyperbolic type otherwise. Q ′ . Can we compute an asymptotic expansion of the resolvent R 0 ( z ) = ( H 0 − z ) − 1 ∼ ?? as z → 0 ? A ′ . Yes. In particular, square root, logarithm and dilogarithm branchings show up, depending on parity of ( p, q ) . 5

  7. ◦ Square root, logarithm and dilogarithm We always choose branches of √ w and log w such that Im √ w > 0 for w ∈ C \ [ 0, ∞ ) , − π < Im log w < π for w ∈ C \ (− ∞ , 0 ] , respectively. In addition, let us set for w ∈ C \ [ 1, ∞ ) ∫ w Li 1 ( λ ) Li 1 ( w ) = − log ( 1 − w ) , Li 2 ( w ) = d λ, λ 0 which have the Taylor expansions: For | w | < 1 ∞ w k ∞ w k ∑ ∑ Li 1 ( w ) = Li 2 ( w ) = k , k 2 . k = 1 k = 1 6

  8. ◦ Elliptic operator in odd dimensional space Theorem. Let d be odd, ( p, q ) = ( d, 0 ) , and γ > 0 . Then ∫ ρ d − 1 e ( ρx ) 2 ( √ z ) d − 2 e ( √ zx ) − 1 k γ ( z, x ) = i π d ρ, ρ 2 − z 2 � Γ ( γ ) Γ ( r ) = { r e i θ ∈ C ; θ ∈ [ 0, π ] } where � . ◦ Elliptic operator in even dimensional space Theorem. Let d be even, ( p, q ) = ( d, 0 ) , and γ > 0 . Then � γ 2 � 2 ( √ z ) d − 2 e ( √ zx ) Li 1 k γ ( z, x ) = − 1 z √ √ λx ) − ( √ z ) d − 2 e ( √ zx ) ∫ γ 2 λ ) d − 2 e ( + 1 ( d λ. 2 λ − z 0 7

  9. Proposition. 1. The function e ( ζ ) is even and entire in ζ ∈ C d , and (− 1/4 ) | α | ∑ 2 e α ζ 2α ; e ( ζ ) = e α = α ! Γ ( | α | + d/2 ) . 2 d π d/2 α ∈ Z d + 2. For any z ∈ C the function e ( √ zx ) satisfies the eigenequation (− △ − z ) e ( √ zx ) = 0 ; △ = � d,0 . Here a branch of √ z does not matter, since e ( ζ ) is even. 8

  10. ◦ Hyperbolic case with odd-even or even-odd signature Theorem. Let ( p, q ) be odd-even or even-odd, and γ > 0 . Then 2 ( √ z ) d − 2 ψ + ( √ zx ) + χ γ ( z, x ) , k γ ( z, x ) = i π where ∫ ∫ τ d − 1 ψ + ( τx ) τ d − 1 ψ − ( τx ) χ γ ( z, x ) = − 1 d τ + 1 d τ τ 2 − z τ 2 + z 2 2 Γ ( γ ) Γ ( γ ) ∫ + 1 h + ,γ ( λ, x ) d λ λ − z 4 i 2 � Γ ( γ 2 ) with ∫ γ f ± ( σ/τ, τx ) h ± ,γ ( τ 2 , x ) = τ d − 2 d σ. σ − γ 9

  11. ◦ Hyperbolic case with even-even signature Theorem. Let ( p, q ) be even-even, and γ > 0 . Then � γ 4 � 2 ( √ z ) d − 2 ψ + ( √ zx ) Li 1 k γ ( z, x ) = − 1 + χ γ ( z, x ) , z 2 where � ∫ γ 2 � ( √ τ ) d − 2 ψ + ( √ τx ) − ( √ z ) d − 2 ψ + ( √ zx ) ∫ 0 χ γ ( z, x ) = 1 − d τ 2 τ − z − γ 2 0 ∫ γ 2 + 1 h + ,γ ( λ, x ) d λ λ − z 2 − γ 2 with ∫ γ f ± ( σ/τ, τx ) h ± ,γ ( τ 2 , x ) = τ d − 2 d σ − τ d − 2 ψ ± ( τx ) . σ τ 10

  12. ◦ Hyperbolic case with odd-odd signature Theorem. Let ( p, q ) be odd-odd, and γ > 0 . Then � � γ 2 � � �� − γ 2 4 ( √ z ) d − 2 φ + ( √ zx ) k γ ( z, x ) = − 1 Li 2 − Li 2 + χ γ ( z, x ) , z z where √ √ λx ) − ( √ z ) d − 2 φ + ( √ zx ) � γ 2 � ∫ γ 2 λ ) d − 2 φ + ( χ γ ( z, x ) = 1 ( log d λ λ − z 4 λ 0 √ √ λx ) − ( √ z ) d − 2 φ + ( √ zx ) � � ∫ 0 λ ) d − 2 φ + ( − γ 2 + 1 ( log d λ 4 λ − z λ − γ 2 ∫ γ 2 h + ,γ ( λ, x ) + 1 d λ 2 λ − z − γ 2 ∫ γ f ± ( σ/τ, τx ) − φ ± ( τx ) with h ± ,γ ( τ 2 , x ) = τ d − 2 d σ . σ τ 11

  13. ◦ Properties of φ ± ( ζ ) and ψ ± ( ζ ) The functions φ ± ( ζ ) and ψ ± ( ζ ) are entire in ζ ∈ C d , and   ∑  ∑ ζ 2α  , φ ± ( ζ ) = f ± ,α,a α ∈ Z d a ∈ J α + � �   i 2 | α | − 2 | a | + d − 2 − 1 f ± ,α,a ∑ ∑ ζ 2α   , ψ ± ( ζ ) = 2 | α | − 2 | a | + d − 2 α ∈ Z d a ∈ I α \ J α + where { � } � a ∈ Z 2 2 | α ′ | + p − 1, 2 | α ′′ | + q − 1 I α = + ; 0 ≤ a ≤ , { } J α = a ∈ I α ; | a | = | α | + ( d − 2 ) /2 , f ± ,α,a = ( ± 1 ) a ′ ( ∓ 1 ) a ′′ e ′ � 2 | α ′ | + p − 1 �� 2 | α ′′ | + q − 1 � α ′ e ′′ α ′′ . a ′ a ′′ 2 2 | α | + d − 2 12

  14. ◦ Properties of φ ± ( ζ ) and ψ ± ( ζ ) , continued The functions φ ± ( ζ ) and ψ ± ( ζ ) satisfy 1. φ ± ( ζ ) = 0 and ψ ± ( ζ ) = ψ ± (− ζ ) if ( p, q ) is odd-even or even- odd; 2. φ ± ( ζ ) = 0 and ψ ± ( ζ ) = − i d − 2 ψ ∓ ( i ζ ) if ( p, q ) is even-even; 3. φ ± ( ζ ) = i d − 2 φ ∓ ( i ζ ) and ψ ± ( ζ ) = 0 if ( p, q ) is odd-odd. In addition, for any z ∈ C (− � ∓ z ) φ ± ( √ zx ) = 0, (− � ∓ z ) ψ ± ( √ zx ) = 0. 13

  15. ◦ Outline of the results for ultra-hyperbolic operator Theorem. 1. If ( p, q ) is odd-even or even-odd, there exist op- erators F ( z ) , G ( z ) analytic at z = 0 such that R 0 ( z ) = F ( z ) √ z + G ( z ) . 2. If ( p, q ) is even-even, there exist operators F ( z ) , G ( z ) analytic at z = 0 such that � 1 � R 0 ( z ) = F ( z ) Li 1 + G ( z ) . z 3. If ( p, q ) is odd-odd, there exist operators F ( z ) , G ( z ) analytic at z = 0 such that � � 1 � � �� − 1 R 0 ( z ) = F ( z ) Li 2 − Li 2 + G ( z ) . z z 14

  16. ◦ “Very rough” strategy for proof The resolvent has a limiting convolution expression ∫ for u ∈ S ( R d ); ( R 0 ( z ) u )( x ) = lim R d k γ ( z, x − y ) u ( y ) d y γ →∞ ∫ e ixξ k γ ( z, x ) = ( 2π ) − d ξ ′ 2 − ξ ′′ 2 − z d ξ. | ξ ′ | + | ξ ′′ | <γ It suffices to expand the kernel k γ ( z, x ) , since it contains all the singular part of R 0 ( z ) . If we move on to the spherical or hyperbolic coordinates, a sin- gular part of k γ ( z, x ) takes, more or less, the standard form ∫ γ a ( ρ ) I = ρ 2 − z d ρ. 0 There could appear only the following three types of a ( ρ ) : 15

  17. • If a ( ρ ) = 2b ( ρ 2 ) with b analytic, then ∫ γ ∫ b ( ρ 2 ) b ( ρ 2 ) ( ρ − √ z )( ρ + √ z ) d ρ = i πb ( z ) I = √ z − ρ 2 − z d ρ. − γ | z | = γ, Im z ≥ 0 • If a ( ρ ) = 2ρb ( ρ 2 ) with b analytic, then ∫ γ ∫ γ ∫ γ b ( λ ) b ( z ) b ( λ ) − b ( z ) I = λ − z d λ = λ − z d λ + d λ λ − z 0 0 0 • If a ( ρ ) = 2ρb ( ρ 2 )( log ρ 2 ) with b analytic, then ∫ γ ∫ γ ∫ γ b ( λ ) log λ b ( z ) log λ [ b ( λ ) − b ( z )] log λ I = d λ = d λ + d λ λ − z λ − z λ − z 0 0 0 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend