bootstrap for large n confining gauge theories
play

Bootstrap for Large N Confining Gauge Theories Alexander Zhiboedov, - PowerPoint PPT Presentation

Bootstrap for Large N Confining Gauge Theories Alexander Zhiboedov, Harvard U IGST 2017, Paris, France with S. Caron-Huot, Z. Komargodski, A. Sever Introduction In this talk I discuss theories of weakly interacting higher spin particles in flat


  1. Bootstrap (Leading Order) For s,t large and positive a thermodynamic picture emerges lim log A ((1 + i ✏ ) s, (1 + i ✏ ) t ) s, t → ∞ s/t fixed s We are here − t distribution of excess zeros ρ poles zeros

  2. Bootstrap (Leading Order) The amplitude takes the form Z d 2 z ρ ( t ; z, ¯ log A = z ) log( z − s )

  3. Bootstrap (Leading Order) The amplitude takes the form Z d 2 z ρ ( t ; z, ¯ log A = z ) log( z − s ) In the large t limit we can write for the distribution z ) = j ( t ) ρ ( t ; z, ¯ t 2 ρ ( z/t, ¯ z/t ) dimensional analysis at large s,t

  4. Bootstrap (Leading Order) The amplitude takes the form Z d 2 z ρ ( t ; z, ¯ log A = z ) log( z − s ) In the large t limit we can write for the distribution z ) = j ( t ) ρ ( t ; z, ¯ t 2 ρ ( z/t, ¯ z/t ) dimensional analysis at large s,t z ) log(1 − s Z d 2 z ρ ( z, ¯ log A ( s, t ) = j ( t ) tz ) ⇒ Z d 2 z ρ ( z, ¯ ρ ( z, ¯ z ) ≥ 0 z ) = 1 unitarity normalization

  5. Bootstrap (Leading Order)

  6. Unitarity

  7. Unitarity The distribution of the zeros comes from a sum of Legendre polynomials with positive coefficients j ( t ) X C 2 n P n (1 + 2 β ) n =0

  8. Unitarity The distribution of the zeros comes from a sum of Legendre polynomials with positive coefficients j ( t ) X C 2 n P n (1 + 2 β ) n =0 together with the Regge limit (3pt couplings cannot be too small) implies finite support of the excess zeros β = s 0.015 t � � � β + 1 � � � ≤ 1 0 -1 � � 2 -0.015

  9. Bootstrap (Leading Order) z ) log(1 − s Z d 2 z ρ ( z, ¯ log A ( s, t ) = j ( t ) tz ) ⇒ Z d 2 z ρ ( z, ¯ ρ ( z, ¯ z ) ≥ 0 z ) = 1 unitarity normalization j ( t ) = t k Assume

  10. Bootstrap (Leading Order) 2d “electric potential” for a positive V ( β ) = log A ( s, t ) Z z ) log(1 − β d 2 z ρ ( z, ¯ = z ) = j ( t ) ρ ( z, ¯ z ) distribution of charge s/t d 2 z ρ ( z, ¯ z ) Z 2d “electric field” E ( β ) = t ∂ s V ( s/t ) = β − z =

  11. Bootstrap (Leading Order) 2d “electric potential” for a positive V ( β ) = log A ( s, t ) Z z ) log(1 − β d 2 z ρ ( z, ¯ = z ) = j ( t ) ρ ( z, ¯ z ) distribution of charge s/t d 2 z ρ ( z, ¯ z ) Z 2d “electric field” E ( β ) = t ∂ s V ( s/t ) = β − z = E ( β ) analytic where ρ = 0 k 2 E ( β ) = 1 β 2 F 1 ( k, k, k + 1; − 1 / β ) = 1 1 + ⇒ β 2 + . . . β − crossing k + 1 M 1

  12. Bootstrap (Leading Order) 2d “electric potential” for a positive V ( β ) = log A ( s, t ) Z z ) log(1 − β d 2 z ρ ( z, ¯ = z ) = j ( t ) ρ ( z, ¯ z ) distribution of charge s/t d 2 z ρ ( z, ¯ z ) Z 2d “electric field” E ( β ) = t ∂ s V ( s/t ) = β − z = E ( β ) analytic where ρ = 0 k 2 E ( β ) = 1 β 2 F 1 ( k, k, k + 1; − 1 / β ) = 1 1 + ⇒ β 2 + . . . β − crossing k + 1 M 1 k ≤ 1 β →∞ E ( β ) = 1 β → 0 E ( β ) = − k β k − 1 log β + . . . lim β lim β + . . . k ≤ 1 ⇒ ⇒ crossing

  13. Bootstrap (Leading Order) M 1 ≥ 1 X ∂ 2 C 2 θ log n P n (cos θ ) ≥ 0 k = 1 ⇒ ⇒ k ≥ 1 ⇒ 2 n mathematical identity

  14. Bootstrap (Leading Order) M 1 ≥ 1 X ∂ 2 C 2 θ log n P n (cos θ ) ≥ 0 k = 1 ⇒ ⇒ k ≥ 1 ⇒ 2 n mathematical identity for ρ ( x, x ) = 1 − 1 < x < 0 ⇒ s The unique solution is 1 Z 1 + s ⇣ ⌘ − t log A ( s, t ) = α 0 t dx ρ ( x ) log tx 0 = α 0 [( s + t ) log( s + t ) − s log s − t log t ] = classical string theory

  15. Part II Universal Correction to the Veneziano Amplitude

  16. Result Part II The high energy limit of WIHS amplitudes at imaginary scattering angles takes the form ∼ E 2 lim log A ( s, t ) = α 0 [( s + t ) log( s + t ) − s log( s ) − t log( t )] s, t → ∞ s/t fixed

  17. Result Part II The high energy limit of WIHS amplitudes at imaginary scattering angles takes the form ∼ E 2 lim log A ( s, t ) = α 0 [( s + t ) log( s + t ) − s log( s ) − t log( t )] s, t → ∞ s/t fixed ✓ s t ◆ 1 − 16 √ π 4  ✓ ◆ ✓ ◆� s t α 0 m 3 / 2 K + K + . . . 3 s + t s + t s + t

  18. Result Part II The high energy limit of WIHS amplitudes at imaginary scattering angles takes the form ∼ E 2 lim log A ( s, t ) = α 0 [( s + t ) log( s + t ) − s log( s ) − t log( t )] s, t → ∞ s/t fixed 1 ∼ E 2 ✓ s t ◆ 1 − 16 √ π 4  ✓ ◆ ✓ ◆� s t α 0 m 3 / 2 K + K + . . . 3 s + t s + t s + t

  19. Result Part II The high energy limit of WIHS amplitudes at imaginary scattering angles takes the form ∼ E 2 lim log A ( s, t ) = α 0 [( s + t ) log( s + t ) − s log( s ) − t log( t )] s, t → ∞ s/t fixed 1 ∼ E 2 ✓ s t ◆ 1 − 16 √ π 4  ✓ ◆ ✓ ◆� s t α 0 m 3 / 2 K + K + . . . 3 s + t s + t s + t elliptic integral of the first kind EllipticK[x]

  20. Result Part II The high energy limit of WIHS amplitudes at imaginary scattering angles takes the form ∼ E 2 lim log A ( s, t ) = α 0 [( s + t ) log( s + t ) − s log( s ) − t log( t )] s, t → ∞ s/t fixed 1 ∼ E 2 ✓ s t ◆ 1 − 16 √ π 4  ✓ ◆ ✓ ◆� s t α 0 m 3 / 2 K + K + . . . 3 s + t s + t s + t elliptic integral of the first kind correction due to the slowdown of the string EllipticK[x] (massive endpoints)/spectrum non-degeneracy

  21. Result Part II The high energy limit of WIHS amplitudes at imaginary scattering angles takes the form ∼ E 2 lim log A ( s, t ) = α 0 [( s + t ) log( s + t ) − s log( s ) − t log( t )] s, t → ∞ s/t fixed corrections are O(1) 1 ∼ E 2 ✓ s t ◆ 1 − 16 √ π 4  ✓ ◆ ✓ ◆� s t α 0 m 3 / 2 K + K + . . . 3 s + t s + t s + t elliptic integral of the first kind correction due to the slowdown of the string EllipticK[x] (massive endpoints)/spectrum non-degeneracy

  22. Result ✓ s t ◆ 1 δ log A ( s, t ) = − 16 √ π 4  ✓ ◆ ✓ ◆� s t α 0 m 3 / 2 K + K + . . . 3 s + t s + t s + t

  23. Result ✓ s t ◆ 1 δ log A ( s, t ) = − 16 √ π 4  ✓ ◆ ✓ ◆� s t α 0 m 3 / 2 K + K + . . . 3 s + t s + t s + t • worldsheet: slowdown of the string endpoints t − 8 √ π ✓ ◆ m 3 / 2 t 1 / 4 + ... j ( t ) = α 0 m m 3 [Chodos, Thorn, 74’] [Baker, Steinke] [Wilczek] [Sonnenschein et al.]

  24. Result ✓ s t ◆ 1 δ log A ( s, t ) = − 16 √ π 4  ✓ ◆ ✓ ◆� s t α 0 m 3 / 2 K + K + . . . 3 s + t s + t s + t • worldsheet: slowdown of the string endpoints t − 8 √ π ✓ ◆ m 3 / 2 t 1 / 4 + ... j ( t ) = α 0 m m 3 [Chodos, Thorn, 74’] [Baker, Steinke] [Wilczek] [Sonnenschein et al.] • bootstrap: removal of the spectrum degeneracy j sub − leading ( t ) 6 = j leading ( t ) + integer

  25. • Scattering of Strings With Massive Endpoints • Universality (Holography & EFT of Long Strings) • Bootstrap

  26. Worldsheet Computation (review) A ( s, t ) = e − S E ( s,t ) lim [Gross, Mende] [Gross, Mañes] | s | , | t | → ∞ [Alday, Maldacena] s/t fixed

  27. Worldsheet Computation (review) A ( s, t ) = e − S E ( s,t ) lim [Gross, Mende] [Gross, Mañes] | s | , | t | → ∞ [Alday, Maldacena] s/t fixed • real scattering angles (amplitude is small) S E � 1

  28. Worldsheet Computation (review) A ( s, t ) = e − S E ( s,t ) lim [Gross, Mende] [Gross, Mañes] | s | , | t | → ∞ [Alday, Maldacena] s/t fixed • real scattering angles (amplitude is small) S E � 1 • imaginary scattering angles (amplitude is large) � S E � 1

  29. Worldsheet Computation (review)

  30. Worldsheet Computation (review) 1 Z Flat space d 2 z ∂ x · ¯ X S E = k j · x ( σ j ) ∂ x − i 2 πα 0 j

  31. Worldsheet Computation (review) 1 Z Flat space d 2 z ∂ x · ¯ X S E = k j · x ( σ j ) ∂ x − i 2 πα 0 j x µ X k µ i log | z − σ i | 2 • general solution 0 = i i

  32. Worldsheet Computation (review) 1 Z Flat space d 2 z ∂ x · ¯ X S E = k j · x ( σ j ) ∂ x − i 2 πα 0 j x µ X k µ i log | z − σ i | 2 • general solution 0 = i i k i · k j X • Virasoro (scattering equations) = 0 σ i − σ j j

  33. Worldsheet Computation (review) 1 Z Flat space d 2 z ∂ x · ¯ X S E = k j · x ( σ j ) ∂ x − i 2 πα 0 j x µ X k µ i log | z − σ i | 2 • general solution 0 = i i k i · k j X • Virasoro (scattering equations) = 0 σ i − σ j j log A ( s, t ) = α 0 [( s + t ) log( s + t ) − s log s − t log t ] ⇒ s, t > 0

  34. Adding The Mass

  35. Adding The Mass 1 Z Z d 2 z ∂ x · ¯ X p S E = ∂ x + m | ∂ σ x | 2 − i k j · x ( σ j ) d σ 2 πα 0 j [Chodos, Thorn]

  36. Adding The Mass 1 Z Z d 2 z ∂ x · ¯ X p S E = ∂ x + m | ∂ σ x | 2 − i k j · x ( σ j ) d σ 2 πα 0 j [Chodos, Thorn] Modified boundary condition: 1 ∂ σ x X 2 πα 0 ∂ τ x + m ∂ σ √ ∂ σ x · ∂ σ x = i k j δ ( σ − σ j ) j

  37. Adding The Mass 1 Z Z d 2 z ∂ x · ¯ X p S E = ∂ x + m | ∂ σ x | 2 − i k j · x ( σ j ) d σ 2 πα 0 j [Chodos, Thorn] Modified boundary condition: 1 ∂ σ x X 2 πα 0 ∂ τ x + m ∂ σ √ ∂ σ x · ∂ σ x = i k j δ ( σ − σ j ) j ∂ σ x 0 · ∂ σ x 0 = 0 is zero for a free string!

  38. Adding The Mass 1 Z Z d 2 z ∂ x · ¯ X p S E = ∂ x + m | ∂ σ x | 2 − i k j · x ( σ j ) d σ 2 πα 0 j [Chodos, Thorn] Modified boundary condition: 1 ∂ σ x X 2 πα 0 ∂ τ x + m ∂ σ √ ∂ σ x · ∂ σ x = i k j δ ( σ − σ j ) j ∂ σ x 0 · ∂ σ x 0 = 0 is zero for a free string! √ m The expansion reorganizes itself in terms of : x µ = x µ S = S 0 + √ mS 1 + mS 2 + m 3 / 2 S 3 0 + √ m x µ 1 + ...

  39. Adding The Mass 1 Z Z d 2 z ∂ x · ¯ X p S E = ∂ x + m | ∂ σ x | 2 − i k j · x ( σ j ) d σ 2 πα 0 j [Chodos, Thorn] Modified boundary condition: 1 ∂ σ x X 2 πα 0 ∂ τ x + m ∂ σ √ ∂ σ x · ∂ σ x = i k j δ ( σ − σ j ) j ∂ σ x 0 · ∂ σ x 0 = 0 is zero for a free string! √ m The expansion reorganizes itself in terms of : x µ = x µ S = S 0 + √ mS 1 + mS 2 + m 3 / 2 S 3 0 + √ m x µ 1 + ...

  40. Adding The Mass The on-shell action evaluates to S E = S GM + 2 3 mL b + ... Z 2 πα 0 m √ σ x 0 ) 1 / 4 d σ ( ∂ 2 σ x 0 · ∂ 2 L b =

  41. Adding The Mass The on-shell action evaluates to S E = S GM + 2 Gross-Mende solution 3 mL b + ... Z 2 πα 0 m √ σ x 0 ) 1 / 4 d σ ( ∂ 2 σ x 0 · ∂ 2 L b =

  42. Adding The Mass The on-shell action evaluates to S E = S GM + 2 Gross-Mende solution 3 mL b + ... Z 2 πα 0 m √ σ x 0 ) 1 / 4 d σ ( ∂ 2 σ x 0 · ∂ 2 L b = reparameterization invariant

  43. Adding The Mass The on-shell action evaluates to S E = S GM + 2 Gross-Mende solution 3 mL b + ... Z 2 πα 0 m √ σ x 0 ) 1 / 4 d σ ( ∂ 2 σ x 0 · ∂ 2 L b = reparameterization invariant For four external particles ✓ s t ◆ 1 δ log A ( s, t ) = − 16 √ π 4  ✓ ◆ ✓ ◆� s t α 0 m 3 / 2 + O ( m 5 / 2 ) K + K 3 s + t s + t s + t

  44. Adding The Mass The on-shell action evaluates to S E = S GM + 2 Gross-Mende solution 3 mL b + ... Z 2 πα 0 m √ σ x 0 ) 1 / 4 d σ ( ∂ 2 σ x 0 · ∂ 2 L b = reparameterization invariant For four external particles ✓ s t ◆ 1 δ log A ( s, t ) = − 16 √ π 4  ✓ ◆ ✓ ◆� s t α 0 m 3 / 2 + O ( m 5 / 2 ) K + K 3 s + t s + t s + t non-universal O ( t − 1 / 4 )

  45. Emergent s-u Crossing Symmetry lim log A ( s, t ) = α 0 [( s + t ) log( s + t ) − s log( s ) − t log( t )] s, t → ∞ ✓ s t ◆ 1 − 16 √ π s/t fixed 4  ✓ ◆ ✓ ◆� s t α 0 m 3 / 2 K + K + . . . 3 s + t s + t s + t

  46. Emergent s-u Crossing Symmetry lim log A ( s, t ) = α 0 [( s + t ) log( s + t ) − s log( s ) − t log( t )] s, t → ∞ ✓ s t ◆ 1 − 16 √ π s/t fixed 4  ✓ ◆ ✓ ◆� s t α 0 m 3 / 2 K + K + . . . 3 s + t s + t s + t log A ( s, t ) = log A ( t, s ) The s-t crossing is manifest:

  47. Emergent s-u Crossing Symmetry lim log A ( s, t ) = α 0 [( s + t ) log( s + t ) − s log( s ) − t log( t )] s, t → ∞ ✓ s t ◆ 1 − 16 √ π s/t fixed 4  ✓ ◆ ✓ ◆� s t α 0 m 3 / 2 K + K + . . . 3 s + t s + t s + t log A ( s, t ) = log A ( t, s ) The s-t crossing is manifest: What about the s-u crossing?

  48. Emergent s-u Crossing Symmetry lim log A ( s, t ) = α 0 [( s + t ) log( s + t ) − s log( s ) − t log( t )] s, t → ∞ ✓ s t ◆ 1 − 16 √ π s/t fixed 4  ✓ ◆ ✓ ◆� s t α 0 m 3 / 2 K + K + . . . 3 s + t s + t s + t log A ( s, t ) = log A ( t, s ) The s-t crossing is manifest: What about the s-u crossing? log A ( s, t ) = Re[log A ( u, t )] u = − s − t

  49. Emergent s-u Crossing Symmetry lim log A ( s, t ) = α 0 [( s + t ) log( s + t ) − s log( s ) − t log( t )] s, t → ∞ ✓ s t ◆ 1 − 16 √ π s/t fixed 4  ✓ ◆ ✓ ◆� s t α 0 m 3 / 2 K + K + . . . 3 s + t s + t s + t log A ( s, t ) = log A ( t, s ) The s-t crossing is manifest: What about the s-u crossing? log A ( s, t ) = Re[log A ( u, t )] u = − s − t 2 3 ??? 4 4 3 2 1 1

  50. Emergent s-u Crossing Symmetry [Komatsu] 2 3 ??? 4 4 3 2 1 1

  51. Emergent s-u Crossing Symmetry [Komatsu] 2 3 ??? 4 4 3 2 1 1

  52. Asymptotic s-u Crossing Equivalently, the asymptotic s-u crossing is: dDisc s log A ( s, t ) ≡ log A ( − s − t + i ✏ , t ) + log A ( − s − t − i ✏ , t ) − 2 log A ( s, t ) = 0 Double discontinuity is zero!

  53. Why is the correction universal?

  54. Why is the correction universal? Why is the massive ends model physical?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend