black hole love story
play

Black Hole Love Story In progress RB, Medved, Ram Brustein Many - PowerPoint PPT Presentation

RB, Sherf, Black Hole Love Story In progress RB, Medved, Ram Brustein Many papers ' 15 - Now - Love # Love # vanishes for GR BHs BSM! The case for horizon-scale corrections : implications


  1. RB, Sherf, Black Hole Love Story In progress RB, Medved, Ram Brustein Many papers ' 15 - Now ןב תטיסרבינוא-ןוירוג • Love # • Love # vanishes for GR BHs – BSM! • The case for horizon-scale corrections : implications for Love # • Can Love # be measured ?

  2. Introduction • What is a BH ? • Schwarzchild/Kerr geometry correct ? • Probe the near horizon region • Probe quantum structure of BHs

  3. Deviations from GR • Q: Why expect anything besides GR during a BH merger ? • A: Fundamental physics principles & established facts  Internal “ quantum ” structure • Q: What type of deviations from GR ? • A: Internal structure  Additional ringdown modes, nonzero Love # • Q: What type of deviations from GR do not expect ? • A: Different talk

  4. Meaning of “ Interior / quantum structure ”         2 2 1 2 2 2 2 GM ds dt dr r d 1  2 r GM 2 1 r Interior ~ r < 2 GM State of interior Quantum state of collapsed object Classically Causally separated from exterior

  5. Excited BH relaxes to equilibrium Quantum mechanically Classically: horizon tidal deformation -ive null energy  +ive null energy  horizon grows  Causality ( Hartle ’ 73, Poisson + ) horizon shrinks  Causality (Mathur ’ 17, Maldacena+ ’ 17) Ringdown/Merger – “ large ” deformation, short time – “ small ” deformation, Inspiral long time

  6. Excited BH relaxes to equilibrium Amount of information that can Can we use be “ read ” determined by the  Ringdown degree of excitation D E/E ? Inspiral, Love # to probe quantum structure ? Ringdown/Merger – “ large ” deformation, short time – “ small ” deformation, Inspiral long time

  7. Blanchet LRR ' 06 Love number(s) n  i x i Hinderer 0711.2420 r Thorn 9706057   Porto 1606.08895 Q          2 i j ij i j 2 M ij 1 1 g n n r n n 1 3 r 3 3 2 tt ij r      2      3 Newtonian ( ) 1 Q d x x x x    ext ij i j 3 ij ij x x  2 Star  Q i j ~ ~ M Q 5 Excitation of l = 2 mode of star @ w = 0 R    Linear response 2 ~ M       3 Q k ij ij 2 2 R 5   2 ~ R ~ 2 3 MR ~ Q R

  8. Hinderer 0711.2420 Love number(s) for NS Thorn 9706057 Boundary conditions 1. Regularity @ r = 0 2. Continuity @ r = R

  9. Hinderer 0711.2420 Love number(s) for NS NS: C~ ¼, BH C = 1/2    2 1 2 A C k ~       2 2     1 2 1 2 ln 1 2 B C D C C

  10. Love number(s) = 0 for 4D GR BHs • 0906.1366 Binnington, Poisson • 0906.0096 Damour, Nagar – No Hair • Tidal deformation of BHs but Love #s = 0 Boundary conditions 1411.4711 Poisson 1. Regularity @ r = 0  horizon • No-Hair theorem  Love #s = 0 2. Continuity @ r = R  infinity 1503.03240 Gurlebeck /. external sources G: “ The change in the geometry of the • 1606.08895 Porto horizon is, however, not reflected in the asymptotic multipole moments ” • Love #s in higher dimensions don ’ t vanish Kol, Smolkin 1110.3764

  11. Love number(s) scaling for hypothetical compact objects 1701.01116v4, Cardoso et al. Original uses x instead of  5 | ln( /10 ) |~100  l M P   Hypothetical compact objects    2 1 2 A C k ~ with radius larger than R S       2    2  1 2 1 2 ln 1 2 B C D C C

  12. The case for horizon-scale corrections : implications for Love # / Love # = 0 scaling for compact objects Requires new internal “ fluid modes ” (or a horizonless object) Otherwise same issue as for GR BHs: “ The change in the geometry of the horizon is, however, not reflected in the asymptotic multipole moments ”

  13. The case for horizon-scale corrections : implications for Love # Introducing ln  : Assume a surface @ D r from the object ’ s Schwarzschild radius D r     ln r R * R S S redshift       D R R 1 1 r g S S r   tt D R  r   S 1 R S   RS

  14. BH as a bound state of strings @ Hagedorn temperature “ collapsed polymer ” , maximal entropy state • From the outside, in equilibrium, looks exactly like a BH • Mass and entropy scale correctly • Does not collapse – entropy dominated/uncertainty principle • Extremely sharp horizon RB, Medved • Correct rate of Hawking radiation 1805.11667 2 ~ hbar Two parameters: T-T Hag , g s 1607.03721 1602.07706 1505.07131

  15. New internal “ fluid modes ” of quantum BHs g  2 " " Hagedorn phase strings, “ collapsed polymer ” s  v c sound • Paremetrically smaller frequencies • Parematerically longer damping times RB, Medved, Yagi 1704.05789 Intrinsic dissipation 1701.07444 Only matter that saturates KSS-like bound can support waves! 1811.12283 RB, Sherf 1902.08449

  16. Spectrum of additional fluid modes: Frequency (without rotation) Two perspectives  same estimate 1        D R R 1 1 r g S S Exterior r    tt D R  r | ln |   S 1 R S   RS Velocity = c redshift z  f ~ c/ R S (-g tt ) 1/2 << c/ R S redshift ~ v/c Interior c  2 , 2 2 / " " g v s Non-Relativistic wave & frequency v/c << 1  f ~ v/R S << c/ R S RB, Medved 1902.07990 No additional relativistic 1805.11667 modes that interfere with 1709. 03566 the GR spacetime modes

  17. The case for horizon-scale corrections : implications for Love # Sound velocities in the “ collapsed polymer ” Not a calculation yet, a reliable estimate   - force per unit area 2 2 2 2 ~ / " " k v c g s D L/L – fractional deformation K I - Elastic modulus for mode of type I All dimensionful parameters included in  – energy density definition of k 2   2 v   sound K p I I   2 c

  18. Can Love be measured ? LISA 1703.10612, Masseli +     5/2 5/2  w TD 2 ~ ~ GM R k k 2 2 3 r c  2 2 ~10 k LISA sensitivity     5 4 1 10 , :10 10 M M f H z   2 TD ~10 k 2 LIGO +, 3 rd generation 4 ~ 10 N cycles only sensitive to large   2 2 2 2 ~ / 1/10 k v c g values of k 2 s

  19. RB, Sherf, Black Hole Love Story In progress RB, Medved, Ram Brustein Many papers ' 15 - Now ןב תטיסרבינוא-ןוירוג • Love # • Love # vanishes for GR BHs – BSM! • The case for horizon-scale corrections : implications for Love # • Can Love # be measured ?

  20. Maximal entropy Causal Entropy Bound (RB+Veneziano ' 99) S(V)=S BH  EV   “ Maximally quantum ” S s G G

  21. Maximal entropy  Maximal positive pressure      p sT p

  22. • Introduction – Love, what is it good for ? In 1911 (some authors have 1906)[1] Augustus Edward Hough Love introduced the values h and k which characterize the overall elastic response of the Earth to the tides. For elastic Earth the Love numbers lie in the range 0.304< k 2 < 0.312

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend