black box search by unbiased variation
play

Black Box Search By Unbiased Variation Per Kristian Lehre and - PowerPoint PPT Presentation

Black Box Search By Unbiased Variation Per Kristian Lehre and Carsten Witt CERCIA, University of Birmingham, UK DTU Informatics, Copenhagen, Denmark ThRaSH - March 24th 2010 State of the Art in Runtime Analysis of RSHs OneMax (1+1) EA O ( n


  1. Black Box Search By Unbiased Variation Per Kristian Lehre and Carsten Witt CERCIA, University of Birmingham, UK DTU Informatics, Copenhagen, Denmark ThRaSH - March 24th 2010

  2. State of the Art in Runtime Analysis of RSHs OneMax (1+1) EA O ( n log n ) [M¨ uhlenbein, 1992] (1+ λ ) EA O ( λn + n log n ) [Jansen et al., 2005] ( µ +1) EA O ( µn + n log n ) [Witt, 2006] O ( n 2 ) w.h.p. 1-ANT [Neumann and Witt, 2006] ( µ +1) IA O ( µn + n log n ) [Zarges, 2009] Linear Functions (1+1) EA Θ( n log n ) [Droste et al., 2002] and [He and Yao, 2003] Θ( n 2+ ε ) , ε > 0 const. cGA [Droste, 2006] e Ω( n ) , PRAS Max. Matching (1+1) EA [Giel and Wegener, 2003] Θ( n 2 log n ) Sorting (1+1) EA [Scharnow et al., 2002] O ( n 3 log( nw max )) SS Shortest Path (1+1) EA [Baswana et al., 2009] O ( n 3 ) MO (1+1) EA [Scharnow et al., 2002] Θ( m 2 log( nw max )) MST (1+1) EA [Neumann and Wegener, 2007] O ( nλ log( nw max )) , λ = ⌈ m 2 (1+ λ ) EA n ⌉ [Neumann and Wegener, 2007] 1-ANT O ( mn log( nw max )) [Neumann and Witt, 2008] Θ( n 5 ) Max. Clique (1+1) EA [Storch, 2006] Θ( n 5 / 3 ) (rand. planar) ( 16 n +1) RLS [Storch, 2006] Θ( m 2 log m ) Eulerian Cycle (1+1) EA [Doerr et al., 2007] Partition (1+1) EA PRAS, avg. [Witt, 2005] e Ω( n ) , arb. bad approx. Vertex Cover (1+1) EA [Friedrich et al., 2007] and [Oliveto et al., 2007a] e Ω( n ) , arb. bad approx. Set Cover (1+1) EA [Friedrich et al., 2007] SEMO Pol. O (log n ) -approx. [Friedrich et al., 2007] Intersection of (1+1) EA 1 /p -approximation in [Reichel and Skutella, 2008] O ( | E | p +2 log( | E | w max )) p ≥ 3 matroids e Ω( n ) UIO/FSM conf. (1+1) EA [Lehre and Yao, 2007] See survey [Oliveto et al., 2007b].

  3. Motivation - A Theory of Randomised Search Heuristics Computational Complexity ◮ Classification of problems according to inherent difficulty. ◮ Common limits on the efficiency of all algorithms. ◮ Assuming a particular model of computation. Computational Complexity of Search Problems ◮ Polynomial-time Local Search [Johnson et al., 1988]. ◮ Black-Box Complexity [Droste et al., 2006].

  4. Black Box Complexity A f Function class F Photo: E. Gerhard (1846). [Droste et al., 2006]

  5. Black Box Complexity x 1 , x 2 , x 3 , ... f ( x 1 ) , f ( x 2 ) , f ( x 3 ) , ... A f Function class F Photo: E. Gerhard (1846). [Droste et al., 2006]

  6. Black Box Complexity x 1 , x 2 , x 3 , ..., x t f ( x 1 ) , f ( x 2 ) , f ( x 3 ) , ..., f ( x t ) A f Function class F Photo: E. Gerhard (1846). ◮ Black box complexity on function class F T F := min A max f ∈ F T A,f [Droste et al., 2006]

  7. Results with old Model ◮ Very general model with few restrictions on resources. ◮ Example: Needle has BB complexity (2 n + 1) / 2 . ◮ Some NP-hard problems have polynomial BB complexity. ◮ Artificially low BB complexity on example functions, e.g. ◮ n/ log(2 n + 1) − 1 on OneMax ◮ n/ 2 − o ( n ) on LeadingOnes

  8. Refined Black Box Model A f Function class F Photo: E. Gerhard (1846).

  9. Refined Black Box Model f ( x 0 ) 0 x 0 f ( x 0 ) A f Function class F Photo: E. Gerhard (1846).

  10. Refined Black Box Model f ( x 0 ) , f ( x 1 ) 0 , 0 x 0 f ( x 0 ) A x 1 f ( x 1 ) f Function class F Photo: E. Gerhard (1846).

  11. Refined Black Box Model f ( x 0 ) , f ( x 1 ) , f ( x 2 ) 0 , 0 , 2 x 0 f ( x 0 ) A x 1 f ( x 1 ) f x 2 f ( x 2 ) Function class F Photo: E. Gerhard (1846).

  12. Refined Black Box Model f ( x 0 ) , f ( x 1 ) , f ( x 2 ) , f ( x 3 ) 0 , 0 , 2 , 3 x 0 f ( x 0 ) A x 1 f ( x 1 ) f x 2 f ( x 2 ) Function class F x 3 f ( x 3 ) Photo: E. Gerhard (1846).

  13. Refined Black Box Model f ( x 0 ) , f ( x 1 ) , f ( x 2 ) , f ( x 3 ) , f ( x 4 ) , f ( x 5 ) , f ( x 6 ) 0 , 0 , 2 , 3 , 0 , 2 x 0 f ( x 0 ) A x 1 f ( x 1 ) f x 2 f ( x 2 ) Function class F x 3 f ( x 3 ) x 4 f ( x 4 ) x 5 f ( x 5 ) Photo: E. Gerhard (1846). x 6 f ( x 6 )

  14. Refined Black Box Model x 0 f ( x 0 ) A x 1 f ( x 1 ) f x 2 f ( x 2 ) Function class F x 3 f ( x 3 ) x 4 f ( x 4 ) x 5 f ( x 5 ) Photo: E. Gerhard (1846). x 6 f ( x 6 ) ◮ Unbiased black box complexity on function class F T F := min A max f ∈ F T A,f

  15. Unbiased Variation Operators 1 Encoding of solution by bitstring x = x 1 x 2 x 3 x 4 x 5 x 1 x 5 x 2 x 4 x 3 1Figure by Dake, available under a Creative Commons Attribution-Share Alike 2.5 Generic license.

  16. Unbiased Variation Operators 1 Encoding of solution by bitstring x = x 1 x 2 x 3 x 4 x 5 x 1 x 2 x 3 x 4 x 5 1Figure by Dake, available under a Creative Commons Attribution-Share Alike 2.5 Generic license.

  17. Unbiased Variation Operators 1 Encoding of solution by bitstring x = x 1 x 2 x 3 x 4 x 5 x 1 x 2 = 1 = ⇒ blue in! x 3 x 4 = 1 = ⇒ orange in! x 5 1Figure by Dake, available under a Creative Commons Attribution-Share Alike 2.5 Generic license.

  18. Unbiased Variation Operators 1 Encoding of solution by bitstring x = x 1 x 2 x 3 x 4 x 5 x 1 x 2 = 1 = ⇒ blue in! x 3 x 4 = 1 = ⇒ orange out! x 5 1Figure by Dake, available under a Creative Commons Attribution-Share Alike 2.5 Generic license.

  19. Unbiased Variation Operators p ( y | x ) For any bitstrings x, y, z and permutation σ , we require 1) p ( y | x ) = p ( y ⊕ z | x ⊕ z ) 2) p ( y | x ) = p ( y σ (1) y σ (2) · · · y σ ( n ) | x σ (1) x σ (2) · · · x σ ( n ) ) → We consider unary operators, but higher arities possible. [Droste and Wiesmann, 2000, Rowe et al., 2007]

  20. Unbiased Variation Operators x ∗ x y r Condition 1) and 2) imply Hamming-invariance.

  21. Unbiased Black-Box Algorithm Scheme 1: t ← 0 . 2: Choose x ( t ) uniformly at random from { 0 , 1 } n . 3: repeat t ← t + 1 . 4: Compute f ( x ( t − 1)) . 5: I ( t ) ← ( f ( x (0)) , ..., f ( x ( t − 1))) . 6: Depending on I ( t ) , choose a prob. distr. p s on { 0 , ..., t − 1 } . 7: Randomly choose an index j according to p s . 8: Depending on I ( t ) , choose an unbiased variation op. p v ( · | x ( j )) . 9: Randomly choose a bitstring x ( t ) according to p v . 10: 11: until termination condition met. → ( µ + , λ ) EA, simulated annealing, metropolis, RLS, any population size, any selection mechanism, steady state EAs, cellular EAs, ranked based mutation ...

  22. Simple Unimodal Functions Algorithm LeadingOnes Θ( n 2 ) (1+1) EA Θ( n 2 + λn ) (1+ λ ) EA Θ( n 2 + µn log n ) ( µ +1) EA BB Ω( n )

  23. Simple Unimodal Functions Algorithm LeadingOnes Θ( n 2 ) (1+1) EA Θ( n 2 + λn ) (1+ λ ) EA Θ( n 2 + µn log n ) ( µ +1) EA BB Ω( n ) Theorem The expected runtime of any black box algorithm with unary, unbiased variation on LeadingOnes is Ω( n 2 ) .

  24. Simple Unimodal Functions Algorithm LeadingOnes Θ( n 2 ) (1+1) EA Θ( n 2 + λn ) (1+ λ ) EA Θ( n 2 + µn log n ) ( µ +1) EA BB Ω( n ) Theorem The expected runtime of any black box algorithm with unary, unbiased variation on LeadingOnes is Ω( n 2 ) . Proof idea ◮ Potential between n/ 2 and 3 n/ 4 . ◮ # 0-bits flipped hypergeometrically distributed. ◮ Lower bound by polynomial drift.

  25. Escaping from Local Optima Jump ( x ) | x | m

  26. Escaping from Local Optima Jump ( x ) | x | m Theorem For any m ≤ n (1 − ε ) / 2 with 0 < ε < 1 , the expected runtime of any black box algorithm with unary, unbiased variation is at least ◮ 2 cm with probability 1 − 2 − Ω( m ) . ◮ � n � cm with probability 1 − 2 − Ω( m ln( n/ ( rm ))) . rm → These bounds are lower than the Θ( n m ) bound for (1+1) EA!

  27. Escaping from Local Optima Jump ( x ) | x | m Proof idea ◮ Simplified drift in gaps 1. Expectation of hypergeometric distribution. 2. Chv´ atal’s bound.

  28. General Pseudo-boolean Functions Algorithm OneMax (1+1) EA Θ( n log n ) (1+ λ ) EA O ( λn + n log n ) ( µ +1) EA O ( µn + n log n ) BB Ω( n/ log n )

  29. General Pseudo-boolean Functions Algorithm OneMax (1+1) EA Θ( n log n ) (1+ λ ) EA O ( λn + n log n ) ( µ +1) EA O ( µn + n log n ) BB Ω( n/ log n ) Theorem The expected runtime of any black box search algorithm with unbiased, unary variation on any pseudo-boolean function with a single global optimum is Ω( n log n ) .

  30. General Pseudo-boolean Functions Algorithm OneMax (1+1) EA Θ( n log n ) (1+ λ ) EA O ( λn + n log n ) ( µ +1) EA O ( µn + n log n ) BB Ω( n/ log n ) Theorem The expected runtime of any black box search algorithm with unbiased, unary variation on any pseudo-boolean function with a single global optimum is Ω( n log n ) . Proof idea ◮ Expected multiplicative weight decrease. ◮ Chv´ atal’s bound.

  31. Summary and Conclusion ◮ Refined black box model. ◮ Proofs are (relatively) easy! ◮ Comprises EAs never previously analysed. ◮ Ω( n log n ) on general functions. ◮ Some bounds coincide with the runtime of (1+1) EA. ◮ Future work: k -ary variation operators for k > 1 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend