bi affine fractal interpolation functions and their box
play

Bi-Affine Fractal Interpolation Functions and their Box Dimension - PowerPoint PPT Presentation

Bi-Affine Fractal Interpolation Functions and their Box Dimension Peter Massopust Institute for Biomathematics and Biometry Helmholtz Zentrum M unchen, Germany and Centre of Mathematics, Lehrstuhl M6 Technische Universit at M unchen,


  1. Bi-Affine Fractal Interpolation Functions and their Box Dimension Peter Massopust Institute for Biomathematics and Biometry Helmholtz Zentrum M¨ unchen, Germany and Centre of Mathematics, Lehrstuhl M6 Technische Universit¨ at M¨ unchen, Germany Joint work with Michael Barnsley (Australian National University) Advances in Fractals and Related Topics, Dec 10 - 14, 2012 – Hongkong 1 / 16

  2. Outline • General iterated function systems • Fractal interpolants defined as fixed points of Read-Bajraktarevi´ c operators • Bi-affine fractal interpolants • Box dimension of bi-affine fractal interpolants 2 / 16

  3. General iterated functions systems (IFSs) Let ( X , d ) be a complete metric space with metric d = d X . Definition. Let M ∈ N . If f m : X → X , m = 1 , 2 , . . . , M, are continuous mappings, then F = ( X ; f 1 , f 2 , ..., f M ) is called an iterated function system (IFS). Define F : 2 X → 2 X by F ( B ) := � ∀ B ∈ 2 X . f ( B ), f ∈F Let H = H ( X ) be the hyperspace of nonempty compact subsets of X endowed with the Hausdorff metric d H . Since F ( H ) ⊂ H , we can also treat F as a mapping F : H → H . 3 / 16

  4. Theorem. (i) The metric space ( H , d H ) is complete. (ii) If ( X , d X ) is compact then ( H , d H ) is compact. (iii) If ( X , d X ) is locally compact then ( H , d H ) is locally compact. (iv) If X is locally compact, or if each f ∈ F is uniformly continuous, then F : H → H is continuous. (v) If f : X → X is a contraction mapping for each f ∈ F , then F : H → H is a contraction mapping. 4 / 16

  5. Attractor of an IFS Definition. A nonempty compact set A ⊂ X is said to be an attractor of the IFS F if (i) F ( A ) = A and (ii) ∃ an open set U ⊂ X such that A ⊂ U and lim k →∞ F k ( B ) = A , ∀ B ∈ H ( U ), where the limit is taken with respect to the Hausdorff metric. The largest open set U such that (ii) is true is called the basin of attraction (for the attractor A of the IFS F ). [For more details and generalizations, see M. F. Barnsley & A. Vince, The chaos game on a general iterated function system, Ergod. Th. & Dynam. Syst. 31 (2011) 1073-1079.] 5 / 16

  6. Fractal interpolants as fixed points of operators Let 1 < N ∈ N and let { ( X j , Y j ) : j = 0 , 1 , ..., N } be finite set of points in the Euclidean plane with X 0 < X 1 < ... < X N . Set I := [ X 0 , X N ]. Let ℓ n : I → [ X n − 1 , X n ] be continuous bijections. ( n = 1 , 2 , ..., N ) Let L : I → I be bounded with L ( x ) = ℓ − 1 n ( x ) , for x ∈ ( X n − 1 , X n ). Let S : [ X 0 , X N ] → R be bounded and piecewise continuous where the only possible discontinuities occur at the points in { X 1 , X 2 , ..., X N − 1 } . Let s := max {| S ( x ) | : x ∈ [ X 0 , X N ] } . 6 / 16

  7. For the complete metric space ( C ( I ) , d ∞ ), define subspaces C ∗ := C ∗ ( I ) := { f ∈ C ( I ) : f ( X 0 ) = Y 0 , f ( X N ) = Y N } , C ∗∗ := C ∗∗ ( I ) := { f ∈ C ( I ) : f ( X j ) = Y j , for j = 0 , 1 , ..., N } . Note that: C ∗∗ ⊂ C ∗ ⊂ C ( I ) are closed subspaces of C ( I ). • f ∈ C ∗∗ interpolates the data { ( X j , Y j ) : j = 0 , 1 , . . . , N } . • Let b ∈ C ∗ and h ∈ C ∗∗ . Define a Read-Bajraktarevi´ c operator T : C ( I ) → C ( I ) by T ( g ) = h + S · ( g ◦ L − b ◦ L ) . 7 / 16

  8. Theorem. The mapping T : C ( I ) → C ( I ) obeys d ∞ ( Tg, Th ) ≤ s d ∞ ( g, h ) , ∀ g, h ∈ C ( I ). In particular, if s < 1 then T is a contraction and thus possesses a unique fixed point f ∈ C ∗∗ . Note that Tg = H + S · g ◦ L where H = h − S · b ◦ L . A fractal interpolation function f is uniquely defined by these three functions: H, S , and L . k →∞ T k ( f 0 ) , f 0 ∈ C ∗ . f = lim The rate of convergence of { T k f 0 : k ∈ N } is governed by ∞ ≤ s k � f − f 0 � ∞ . � � f − T k ( f 0 ) � � 8 / 16

  9. The metric space ( I × R , d q ) The following metric is a generalization of the “taxi cab metric.” Theorem. Let α, β > 0 and q : I → R . Define a mapping d q : ( I × R ) × ( I × R ) → [0 , ∞ ) by d q (( x 1 , y 1 ) , ( x 2 , y 2 )) = α | x 1 − x 2 | + β | ( y 1 − q ( x 1 )) − ( y 2 − q ( x 2 )) | , ∀ ( x 1 , y 1 ), ( x 2 , y 2 ) ∈ I × R . Then d q is a metric on I × R . If q is continuous then ( I × R , d q ) is a complete metric space. 9 / 16

  10. Fractal interpolants as attractors of IFSs Define w n : I × R → I × R by w n ( x, y ) = ( ℓ n ( x ) , h ( ℓ n ( x )) + S ( l n ( x ))( y − b ( x ))) Define an IFS by W = ( I × R ; w 1 , w 2 , ..., w N ). Let B ≥ 0 and let X = { ( x, y ) : x ∈ I, | y − f ( x ) | ≤ B } . Theorem. Let s < 1 and let f ∈ C ∗∗ be the fixed point of T . Let ∃ λ ℓ < 1 so that | ℓ n ( x 1 ) − ℓ n ( x 2 ) | ≤ λ ℓ | x 1 − x 2 | ∀ x 1 , x 2 ∈ I, ∀ n . Let ∃ λ S > 0 so that | S ( x 1 ) − S ( x 2 ) | ≤ λ S | x 1 − x 2 | ∀ x 1 , x 2 ∈ I. Then the IFS ( X ; w 1 , w 2 , ..., w N ) is contractive with respect to the metric d f with α = 1 and 0 < β < (1 − λ ℓ ) /λ S Bλ ℓ . In particular, under these conditions, the IFS W has a unique attractor A = graph ( f ). graph ( T ( g )) = W (graph ( g )) , for all g ∈ C ( I ) . We have not provided a metric with respect to which W is contractive! 10 / 16

  11. Bi-affine fractal interpolation Let � X n − X n − 1 � ℓ n ( x ) := X n − 1 + ( x − X 0 ) , X N − X 0 S ( x ) = s n ( ℓ − 1 n ( x )) , for x ∈ [ X n − 1 , X n ] , n = 1 , . . . , N, � s n − s n − 1 � s n ( x ) = s n − 1 + ( x − X n − 1 ) , X n − X n − 1 with { s j : j = 0 , 1 , 2 , ..., N } ⊂ ( − 1 , 1). Then S is continuous and | S ( x ) | ≤ max {| s j | : j = 0 , 1 , ..., N } =: s < 1 . Let � Y N − Y 0 � b ( x ) = Y 0 + ( x − X 0 ) X N − X 0 and let � Y n − Y n − 1 � h ( x ) = Y n − 1 + ( x − X n − 1 ) . X n − X n − 1 11 / 16

  12. Bi-affine fractal interpolants T has a unique fixed point f satisfying the set of functional equations f ( ℓ n ( x )) − h ( ℓ n ( x )) = [ s n − 1 + ( s n − s n − 1 ) x ][ f ( x ) − b ( x )] , x ∈ I . f is called a bi-affine fractal interpolant . Define an IFS W by � Y n − Y n − 1 � ( x − X 0 ) w n ( x, y ) = ( ℓ n ( x ) , Y n − 1 + X N − X 0 � Y N − Y 0 � � s n − s n − 1 � � � � � + s n − 1 + ( x − X 0 ) y − Y 0 − ( x − X 0 ) . X N − X 0 X N − X 0 Note: w n ( X N , y ) = ( X n , Y n + s n ( y − Y N )) and w n +1 ( X 0 , y ) = ( X n , Y n + s n ( y − Y 0 )) . 12 / 16

  13. Example of a bilinear interpolant The images of any (possibly degenerate) parallelogram with vertices at ( X 0 , Y 0 ± H ) and ( X N , Y N ± H ), for H ∈ R under the IFS W fit together neatly. Figure : A bilinear fractal interpolant. 13 / 16

  14. Box dimension of bi-affine interpolants Box-counting or box dimension of a bounded set M ⊂ R n : log N ε ( M ) dim B M := lim , ( ∗ ) log ε − 1 ε → 0+ where N ε ( M ) is the minumum number of square boxes, with sides parallel to the axes, whose union contains M. “dim B M = D ” ⇐ ⇒ the limit in (*) exists and equals D. Theorem. Let W denote the bi-affine IFS defined above, and let Γ( f ) denote its attractor. Let a n = 1 /N for n = 1 , 2 , ..., N , and let � N s n − 1 + s n > 1 . If Γ( f ) is not a straight line segment then n =1 2 � N � s n − 1 + s n � log 2 n =1 dim B Γ( f ) = 1 + ; log N otherwise dim B Γ( f ) = 1 . 14 / 16

  15. Idea of Proof Arguments based on approach in Hardin & M. (1985) and Barnley, Elton, Hardin, M. (1989) Denote by w σ 1 ··· σ r (Γ( f )) the image of Γ( f ) under the maps w σ 1 ··· σ r := w σ 1 ◦ · · · ◦ w σ r over the subinterval ℓ σ 1 ··· σ r ( I ). Then one can show there that exist constants 0 < c ≤ c such that c λ σ 1 · · · λ σ r N | σ | ≤ N σ 1 ··· σ r ( | σ | ) ≤ c λ σ 1 · · · λ σ r N | σ | , Here, N σ 1 ··· σ r ( | σ | ) = minimum number of N −| σ | × N −| σ | -squares needed to cover w σ 1 ··· σ r (Γ( f )) and λ i := s i − 1 + s i . 2 Nonlinearity ( xy -term) rather tricky; delicate estimates are needed. 15 / 16

  16. References • M. F. Barnsely, Fractal functions and interpolation, Constr. Approx. 2 (1986) 303-329. • M. F. Barnsley, J. Elton, D. P. Hardin and P. R. Massopust, Hidden variable fractal interpolation functions, SIAM J. Math. Anal. , 20 (5) (1989), 1218–1248. • M. F. Barnsley and P. R. Massopust, Bilinear Fractal Interpolation and Box Dimension , submitted to Constructive Approximation. (http://arxiv.org/abs/1209.3139) • D. P. Hardin and P. R. Massopust, The capacity for a class of fractal functions, Commun. Math. Phys. 105 (1986), 455—460. • P. R. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets , Academic Press, 1994. • P. R. Massopust, Interpolation and Approximation with Splines and Fractals, Oxford University Press, 2010 16 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend