approximation by group invariant subspaces
play

Approximation by group invariant subspaces Davide Barbieri - PowerPoint PPT Presentation

Approximation by group invariant subspaces Davide Barbieri (Universidad Aut onoma de Madrid) Joint work with C. Cabrelli, E. Hern andez and U. Molter XIV Encuentro Nacional de Analistas A. P. Calder on Villa General Belgrano, 22 de


  1. Approximation by group invariant subspaces Davide Barbieri (Universidad Aut´ onoma de Madrid) Joint work with C. Cabrelli, E. Hern´ andez and U. Molter XIV Encuentro Nacional de Analistas A. P. Calder´ on Villa General Belgrano, 22 de Noviembre de 2018

  2. Motivation I: dimensionality reduction Approximation by linear subspaces of finite dimensional data in a vector space: Principal Component Analysis.

  3. Motivation I: dimensionality reduction Approximation by linear subspaces of finite dimensional data in a vector space: Principal Component Analysis.

  4. Motivation I: dimensionality reduction Approximation by linear subspaces of finite dimensional data in a vector space: Principal Component Analysis.

  5. Motivation I: dimensionality reduction Approximation by linear subspaces of finite dimensional data in a vector space: Principal Component Analysis. Approximation by shift-invariant subspaces of data in L 2 ( R d ): Aldroubi, Cabrelli, Hardin and Molter 2007.

  6. Motivation II: symmetries in data - abelian

  7. Motivation II: symmetries in data - abelian

  8. Motivation II: symmetries in data - non abelian

  9. Results For non abelian symmetries on L 2 ( R d ), we will discuss: 1. characterizations of invariant spaces; 2. construction of group Parseval frames; 3. approximation by group invariant subspaces.

  10. Definition of group invariance Let Λ ⊂ R d be a lattice subgroup 1 , and let G ⊂ O ( d ) be a finite group of isometries such that g Λ = Λ for all g ∈ G . 1 That is Λ = A Z d ⊂ R d for A ∈ GL d ( R ).

  11. Definition of group invariance Let Λ ⊂ R d be a lattice subgroup 1 , and let G ⊂ O ( d ) be a finite group of isometries such that g Λ = Λ for all g ∈ G . Let Γ = Λ ⋊ G = { ( k , g ) : k ∈ Λ , g ∈ G } , with composition law ( k , g ) · ( k ′ , g ′ ) = ( gk ′ + k , gg ′ ) . Γ is a crystallographic group, which acts on R d by ( k , g ) x = gx + k . 1 That is Λ = A Z d ⊂ R d for A ∈ GL d ( R ).

  12. Definition of group invariance Let Λ ⊂ R d be a lattice subgroup 1 , and let G ⊂ O ( d ) be a finite group of isometries such that g Λ = Λ for all g ∈ G . Let Γ = Λ ⋊ G = { ( k , g ) : k ∈ Λ , g ∈ G } , with composition law ( k , g ) · ( k ′ , g ′ ) = ( gk ′ + k , gg ′ ) . Γ is a crystallographic group, which acts on R d by ( k , g ) x = gx + k . The corresponding action on L 2 ( R d ) is given by the operators T ( k ) f ( x ) = f ( x − k ) , R ( g ) f ( x ) = f ( g − 1 x ) , for f ∈ L 2 ( R d ) which indeed satisfy T ( k ) R ( g ) T ( k ′ ) R ( g ′ ) = T ( gk ′ + k ) R ( gg ′ ). 1 That is Λ = A Z d ⊂ R d for A ∈ GL d ( R ).

  13. Definition of group invariance Let Λ ⊂ R d be a lattice subgroup 1 , and let G ⊂ O ( d ) be a finite group of isometries such that g Λ = Λ for all g ∈ G . Let Γ = Λ ⋊ G = { ( k , g ) : k ∈ Λ , g ∈ G } , with composition law ( k , g ) · ( k ′ , g ′ ) = ( gk ′ + k , gg ′ ) . Γ is a crystallographic group, which acts on R d by ( k , g ) x = gx + k . The corresponding action on L 2 ( R d ) is given by the operators T ( k ) f ( x ) = f ( x − k ) , R ( g ) f ( x ) = f ( g − 1 x ) , for f ∈ L 2 ( R d ) which indeed satisfy T ( k ) R ( g ) T ( k ′ ) R ( g ′ ) = T ( gk ′ + k ) R ( gg ′ ). A closed subspace V ⊂ L 2 ( R d ) is Γ-invariant if T ( k ) R ( g ) V ⊂ V ∀ k ∈ Λ , g ∈ G . 1 That is Λ = A Z d ⊂ R d for A ∈ GL d ( R ).

  14. Shift-invariant spaces I

  15. Shift-invariant spaces I Let Λ ⊥ ⊂ R d be the annihilator 2 lattice of Λ, and let Ω ⊂ R d be | Ω ∩ (Ω + s ) | = 0 for 0 � = s ∈ Λ ⊥ , and | R d \ � s ∈ Λ ⊥ Ω + s | = 0. 2 If Λ = A Z d , then Λ ⊥ = ( A t ) − 1 Z d .

  16. Shift-invariant spaces I Let Λ ⊥ ⊂ R d be the annihilator 2 lattice of Λ, and let Ω ⊂ R d be | Ω ∩ (Ω + s ) | = 0 for 0 � = s ∈ Λ ⊥ , and | R d \ � s ∈ Λ ⊥ Ω + s | = 0. The map T : L 2 ( R d ) → L 2 (Ω , ℓ 2 (Λ ⊥ )) is the surjective isometry T [ f ]( ω ) = { � f ( ω + s ) } s ∈ Λ ⊥ . 2 If Λ = A Z d , then Λ ⊥ = ( A t ) − 1 Z d .

  17. Shift-invariant spaces I Let Λ ⊥ ⊂ R d be the annihilator 2 lattice of Λ, and let Ω ⊂ R d be | Ω ∩ (Ω + s ) | = 0 for 0 � = s ∈ Λ ⊥ , and | R d \ � s ∈ Λ ⊥ Ω + s | = 0. The map T : L 2 ( R d ) → L 2 (Ω , ℓ 2 (Λ ⊥ )) is the surjective isometry T [ f ]( ω ) = { � f ( ω + s ) } s ∈ Λ ⊥ . Since T [ T ( k ) f ]( ω ) = e − 2 π ik ω T [ f ]( ω ), it is equivalent to have ◮ V ⊂ L 2 ( R d ) is Λ-invariant: f ∈ V ⇒ T ( k ) f ∈ V for all k ∈ Λ ◮ T [ V ] is invariant under multiplication by e − 2 π ik ω for all k ∈ Λ 2 If Λ = A Z d , then Λ ⊥ = ( A t ) − 1 Z d .

  18. Shift-invariant spaces I Let Λ ⊥ ⊂ R d be the annihilator 2 lattice of Λ, and let Ω ⊂ R d be | Ω ∩ (Ω + s ) | = 0 for 0 � = s ∈ Λ ⊥ , and | R d \ � s ∈ Λ ⊥ Ω + s | = 0. The map T : L 2 ( R d ) → L 2 (Ω , ℓ 2 (Λ ⊥ )) is the surjective isometry T [ f ]( ω ) = { � f ( ω + s ) } s ∈ Λ ⊥ . Since T [ T ( k ) f ]( ω ) = e − 2 π ik ω T [ f ]( ω ), it is equivalent to have ◮ V ⊂ L 2 ( R d ) is Λ-invariant: f ∈ V ⇒ T ( k ) f ∈ V for all k ∈ Λ ◮ T [ V ] is invariant under multiplication by e − 2 π ik ω for all k ∈ Λ If V is Λ-invariant, there exists Φ = { φ i } i ∈ N ⊂ L 2 ( R d ) such that L 2 ( R d ) . V = span { T ( k ) φ i : k ∈ Λ , i ∈ N } Thus L 2 (Ω ,ℓ 2 (Λ ⊥ )) T [ V ] = span { e − 2 π ik · T [ φ i ] : k ∈ Λ , i ∈ N } 2 If Λ = A Z d , then Λ ⊥ = ( A t ) − 1 Z d .

  19. Shift-invariant spaces I The map T : L 2 ( R d ) → L 2 (Ω , ℓ 2 (Λ ⊥ )) is the surjective isometry T [ f ]( ω ) = { � f ( ω + s ) } s ∈ Λ ⊥ . Since T [ T ( k ) f ]( ω ) = e − 2 π ik ω T [ f ]( ω ), it is equivalent to have ◮ V ⊂ L 2 ( R d ) is Λ-invariant: f ∈ V ⇒ T ( k ) f ∈ V for all k ∈ Λ ◮ T [ V ] is invariant under multiplication by e − 2 π ik ω for all k ∈ Λ If V is Λ-invariant, there exists Φ = { φ i } i ∈ N ⊂ L 2 ( R d ) such that L 2 ( R d ) . V = span { T ( k ) φ i : k ∈ Λ , i ∈ N } Thus L 2 (Ω ,ℓ 2 (Λ ⊥ )) T [ V ] = span { e − 2 π ik · T [ φ i ] : k ∈ Λ , i ∈ N }

  20. Shift-invariant spaces I The map T : L 2 ( R d ) → L 2 (Ω , ℓ 2 (Λ ⊥ )) is the surjective isometry T [ f ]( ω ) = { � f ( ω + s ) } s ∈ Λ ⊥ . Since T [ T ( k ) f ]( ω ) = e − 2 π ik ω T [ f ]( ω ), it is equivalent to have ◮ V ⊂ L 2 ( R d ) is Λ-invariant: f ∈ V ⇒ T ( k ) f ∈ V for all k ∈ Λ ◮ T [ V ] is invariant under multiplication by e − 2 π ik ω for all k ∈ Λ If V is Λ-invariant, there exists Φ = { φ i } i ∈ N ⊂ L 2 ( R d ) such that L 2 ( R d ) . V = span { T ( k ) φ i : k ∈ Λ , i ∈ N } Thus L 2 (Ω ,ℓ 2 (Λ ⊥ )) T [ V ] = span { e − 2 π ik · T [ φ i ] : k ∈ Λ , i ∈ N } so, we have that f ∈ V if and only if, for a.e. ω ∈ Ω, ℓ 2 (Λ ⊥ ) . T [ f ]( ω ) ∈ span {T [ φ i ]( ω ) : i ∈ N }

  21. Shift-invariant spaces I The map T : L 2 ( R d ) → L 2 (Ω , ℓ 2 (Λ ⊥ )) is the surjective isometry T [ f ]( ω ) = { � f ( ω + s ) } s ∈ Λ ⊥ . If V is Λ-invariant, there exists Φ = { φ i } i ∈ N ⊂ L 2 ( R d ) such that L 2 ( R d ) . V = span { T ( k ) φ i : k ∈ Λ , i ∈ N } Thus L 2 (Ω ,ℓ 2 (Λ ⊥ )) T [ V ] = span { e − 2 π ik · T [ φ i ] : k ∈ Λ , i ∈ N } so, we have that f ∈ V if and only if, for a.e. ω ∈ Ω, ℓ 2 (Λ ⊥ ) . T [ f ]( ω ) ∈ span {T [ φ i ]( ω ) : i ∈ N }

  22. Shift-invariant spaces I The map T : L 2 ( R d ) → L 2 (Ω , ℓ 2 (Λ ⊥ )) is the surjective isometry T [ f ]( ω ) = { � f ( ω + s ) } s ∈ Λ ⊥ . If V is Λ-invariant, there exists Φ = { φ i } i ∈ N ⊂ L 2 ( R d ) such that L 2 ( R d ) . V = span { T ( k ) φ i : k ∈ Λ , i ∈ N } Thus L 2 (Ω ,ℓ 2 (Λ ⊥ )) T [ V ] = span { e − 2 π ik · T [ φ i ] : k ∈ Λ , i ∈ N } so, we have that f ∈ V if and only if, for a.e. ω ∈ Ω, ℓ 2 (Λ ⊥ ) . T [ f ]( ω ) ∈ span {T [ φ i ]( ω ) : i ∈ N } The range function J of V is the measurable map J : Ω → { closed subspaces of ℓ 2 (Λ ⊥ ) } given by ℓ 2 (Λ ⊥ ) . J ( ω ) = span {T ( φ i )( ω ) : i ∈ N }

  23. Shift-invariant spaces I The map T : L 2 ( R d ) → L 2 (Ω , ℓ 2 (Λ ⊥ )) is the surjective isometry T [ f ]( ω ) = { � f ( ω + s ) } s ∈ Λ ⊥ . If V is Λ-invariant, there exists Φ = { φ i } i ∈ N ⊂ L 2 ( R d ) such that L 2 ( R d ) . V = span { T ( k ) φ i : k ∈ Λ , i ∈ N } Thus L 2 (Ω ,ℓ 2 (Λ ⊥ )) T [ V ] = span { e − 2 π ik · T [ φ i ] : k ∈ Λ , i ∈ N } so, we have that f ∈ V if and only if, for a.e. ω ∈ Ω, ℓ 2 (Λ ⊥ ) . T [ f ]( ω ) ∈ span {T [ φ i ]( ω ) : i ∈ N } The range function J of V is the measurable map J : Ω → { closed subspaces of ℓ 2 (Λ ⊥ ) } given by ℓ 2 (Λ ⊥ ) . J ( ω ) = span {T ( φ i )( ω ) : i ∈ N }

  24. Γ-invariance Γ-invariance = Λ-invariance + G -invariance

  25. Γ-invariance Γ-invariance = Λ-invariance + G -invariance Characterize Γ-invariance ⇐ ⇒ characterize G -invariance for shift-invariant spaces.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend