applications of verified methods for solving non smooth
play

Applications of Verified Methods for Solving Non-smooth Initial - PowerPoint PPT Presentation

Motivation Non-smooth IVPs Example Applications Conclusions Applications of Verified Methods for Solving Non-smooth Initial Value Problems Ekaterina Auer, Andreas Rauh University of Duisburg-Essen, University of Rostock June 14, 2011


  1. Motivation Non-smooth IVPs Example Applications Conclusions Applications of Verified Methods for Solving Non-smooth Initial Value Problems Ekaterina Auer, Andreas Rauh University of Duisburg-Essen, University of Rostock June 14, 2011 (updated) E. Auer, A. Rauh University of Duisburg-Essen Applications of Verified Methods for Non-smooth IVPs 1

  2. Motivation Non-smooth IVPs Example Applications Conclusions Non-smooth Models in Engineering Friction Contact dynamics Besides: saturation effects, ensuring good numerical behavior, etc. E. Auer, A. Rauh University of Duisburg-Essen Applications of Verified Methods for Non-smooth IVPs 2

  3. Motivation Non-smooth IVPs Example Applications Conclusions Implicitly Non-smooth Models: Traps in Code Trap Example IF-THEN-ELSE Force: F ≤ 0 Muscle activation function: SWITCH 0 ≤ a ( t ) = A 1 e − c 1 ( t − t 1 ) + A 2 e − c 2 ( t − t 2 ) ≤ 1 | x | Hysteresis: � v ( t ) − σ · | v ( t ) | · | ω ( t ) | ν − 1 · ω ( t ) ω ( t ) = ρ · ˙ + ( σ − 1) · v ( t ) · | ω ( t ) | ν ) sgn x Friction: F ( v ) = sgn ( v ) · F + µ · v E. Auer, A. Rauh University of Duisburg-Essen Applications of Verified Methods for Non-smooth IVPs 3

  4. Motivation Non-smooth IVPs Example Applications Conclusions Biomechanical Context: MobileBody Chief coordination: Prof. A. Kecskem´ ethy (UDE) MobileBody Gait lab Assistance during OP planning MRT OP assessment rehabilitation X-Ray Our major task: Characterization of uncertain parameters Non-smoothness in: Muscle models, stabilization of stance E. Auer, A. Rauh University of Duisburg-Essen Applications of Verified Methods for Non-smooth IVPs 4

  5. Motivation Non-smooth IVPs Example Applications Conclusions Fuel Cells Context: Development of VeriCell Cooperation: Chair of Mechatronics, Rostock Gas supply Preheater SOFC stack module (30 fuel cells) Our task: Control design, verified simulation environment Non-smoothness: Saturation effects in reaction kinetics, etc. E. Auer, A. Rauh University of Duisburg-Essen Applications of Verified Methods for Non-smooth IVPs 5

  6. Motivation Non-smooth IVPs Example Applications Conclusions Background: Verified Methods for Non-smooth Systems Description of a non-smooth IVP ւ ց Analytical Graph-like � f + ( x ) , h ( x ( t ) , t ) < 0 x ′ = f − ( x ) , h ( x ( t ) , t ) > 0 Rihm (1993), Rauh (2006), Eggers (2008), Mahmoud and Chen (2008) Nedialkov and Mohrenschildt (2002) Verified non-smooth optimization: Slopes, generalized gradients ... Ratz (1995), Kearfott (2004), Schnurr (2007), ... E. Auer, A. Rauh University of Duisburg-Essen Applications of Verified Methods for Non-smooth IVPs 6

  7. Motivation Non-smooth IVPs Example Applications Conclusions Problem Definition � x ′ = f ( x ) , Interval IVP: x (0) ∈ [ x 0 ] where f : D ⊂ R n → R n or D ⊂ IR n → IR n and is given in algorithmic representation:  τ i ( x ) = g i ( x ) = x i , i = 1 . . . n  τ i ( x ) = g i ( τ 1 ( x ) , . . . , τ i − 1 ( x )) , i = n + 1 . . . l, .  g i ∈ S EO ∪ S PW S EO = { + , − , ∗ , /, sin , cos , . . . } and S PW are piecewise smooth functions E. Auer, A. Rauh University of Duisburg-Essen Applications of Verified Methods for Non-smooth IVPs 7

  8. Motivation Non-smooth IVPs Example Applications Conclusions Definition of Piecewise Functions φ i,τ ν ,c ( τ i 0 ( x ) , . . . , τ i p ( x )) : f(x)  τ i 0 ( x ) , c − 1 = −∞ < τ ν ( x ) ≤ c 0 ,    τ i 1 ( x ) , c 0 < τ ν ( x ) ≤ c 1 ,   . . . . . .  τ i p − 1 , ( x ) c p − 2 < τ ν ( x ) ≤ c p − 1 ,   c 0  c 1 c 2 x  τ i p ( x ) , c p − 1 < τ ν ( x ) < c p = + ∞ An interval extension of φ over X ( φ ( X ) ): � τ i ( X ) , if X ⊆ ( c i − 1 , c i ) , � j − 1 k = i +1 τ k ([ c k − 1 , c k ]) ∪ τ i ([ x, c i ]) ∪ τ j ([ c j − 1 , x ]) , if X ⊆ ( c i − 1 , c j ) E. Auer, A. Rauh University of Duisburg-Essen Applications of Verified Methods for Non-smooth IVPs 8

  9. Motivation Non-smooth IVPs Example Applications Conclusions Definition of the Derivative An interval extension of φ ′ over X ( φ ′ ( X ) )  τ ′ i ( X ) , if X ⊆ ( c i − 1 , c i ) ,    � j − 1 k = i +1 τ ′ k ([ c k − 1 , c k ]) ∪ τ ′ i ([ x, c i ]) ∪ τ ′ j ([ c j − 1 , x ])    ∪ rest , if X ⊆ ( c i − 1 , c j ) , where REST depends on: – how many switching points X contains, – whether φ is continuous, if we want the mean value theorem to hold. E. Auer, A. Rauh University of Duisburg-Essen Applications of Verified Methods for Non-smooth IVPs 9

  10. Motivation Non-smooth IVPs Example Applications Conclusions Suppose we have a single switching point ( IF-THEN-ELSE ) � φ 0 ( x ) , x < c 0 , φ ( x ) = φ 1 ( x ) , x > c 0 . then REST is ( φ ′ 0 ([ x, c 0 ]) + φ ′ 1 ([ c 0 , x ])) · [0 , 1] if φ is continuous, � φ 1 ( c 0 ) − φ 0 ( c 0 ) � + ( φ ′ 0 ([ x, c 0 ]) + φ ′ 1 ([ c 0 , x ])) · [0 , 1] [ c 0 , x ] − x 0 � φ 0 ( c 0 ) − φ 1 ( c 0 ) � + ( φ ′ 0 ([ x, c 0 ]) + φ ′ ∪ 1 ([ c 0 , x ])) · [0 , 1] [ x, c 0 ] − x 0 if φ is discontinuous. Problem: We need x 0 to avoid enclosures containing ∞ afap E. Auer, A. Rauh University of Duisburg-Essen Applications of Verified Methods for Non-smooth IVPs 10

  11. Motivation Non-smooth IVPs Example Applications Conclusions Properties of φ ′ ( X ) 1 If the derivative of φ exists for x ∈ X , then φ ′ ( x ) ∈ φ ′ ( X ) 2 The slope δφ ( X, x 0 ) ⊆ φ ′ ( X ) 3 The mean value theorem holds: φ ( x ) = φ ( x 0 ) + φ ′ ( ξ )( x − x 0 ) ∈ φ ( x 0 ) + φ ′ ( X )( X − x 0 ) 4 If φ is continuous ( τ i j ( c j ) = τ i j +1 ( c j ) , 0 ≤ j < p ), then f ( x ) is continuous. E. Auer, A. Rauh University of Duisburg-Essen Applications of Verified Methods for Non-smooth IVPs 11

  12. Motivation Non-smooth IVPs Example Applications Conclusions Solution Definitions Two situations: ւ ց (a) f is discontinuous only in t (b) f is discontinuous in t , x τ ν ( x ) = t or τ i j ( c j ) = τ i j +1 ( c j ) Solution: t � x ( t ) = x 0 + f ( x ( s )) ds , x 0 ∈ [ x 0 ] Depends on the application 0 E. Auer, A. Rauh University of Duisburg-Essen Applications of Verified Methods for Non-smooth IVPs 12

  13. Motivation Non-smooth IVPs Example Applications Conclusions ValEncIA-IVP 1 For Non-smooth IVPs General approach in ValEncIA : A posteriori x ( t ) ∈ [ x ( t )] := x app ( t ) + [ R ( t )] � �� � � �� � � �� � verified state enclosure error bounds non-verified approximation 1 continuous Conditions for the right side: 2 Lipschitz 1 VAL idation of state ENC losures using I nterval A rithmetic for I nitial V alue P roblems E. Auer, A. Rauh University of Duisburg-Essen Applications of Verified Methods for Non-smooth IVPs 13

  14. Motivation Non-smooth IVPs Example Applications Conclusions ValEncIA-IVP For Non-smooth IVPs (Cont.) The algorithm for 0 ≤ t ≤ T : 1 Start with [ x (0) ] , x app ( t ) , [ R (0)] 2 k = 1 . . . k max or while [ ˙ R ( k +1) ([0 , T ])] != [ ˙ R ( k ) ([0 , T ])] Compute [ ˙ R ( k +1) ([0 , T ])] := ˙ x app + f ([ x ( k ) ]) , (MVT) where [ x ( k ) ] := [ x ( k ) ([0 , T ])] If [ ˙ R ( k +1) ([0 , T ])] ⊆ [ ˙ R ( k ) ([0 , T ])] then � � [ R (0)] + [ ˙ R ( k +1) ([0 , T ]) R ( k +1) ([0 , T ])][0 , T ] := � � x ( k +1) ([0 , T ]) x app + [ R ( k +1) ([0 , T ])] := Differences ((non-)smooth): Derivative definition, the fixed point theorem To-do-list: Discontinuities in x for the right side E. Auer, A. Rauh University of Duisburg-Essen Applications of Verified Methods for Non-smooth IVPs 14

  15. Motivation Non-smooth IVPs Example Applications Conclusions Implementation Issues: Class pwFunc Remarks on f ( x ) Class declaration template<class T> f ′ ( X ) is obtained with class pwFunc { public: pwFunc typedef T (*ptrFct)(const T & x); pwFunc(const vector<interval> & p, pwFunc uses const vector<ptrFct> & f); T operator()(const T & x) FADBAD++ and { return getValueAtX(x); } overloads hull , d() private: vector< ptrFct > functions; f ′ ( X ) encloses both left vector<interval> points; vector<T> subintervals; and right derivatives T getValueAtX(const T & x); void generateSubintervals(const T & x); pwFunc is plugged into } ; ValEncIA E. Auer, A. Rauh University of Duisburg-Essen Applications of Verified Methods for Non-smooth IVPs 15

  16. Motivation Non-smooth IVPs Example Applications Conclusions Implementation Example: A Discontinuous Function template <class T> T f1(const T & x) { return -1+x; } template <class T> T f2(const T & x) { return 1+x; } template<class T> T ff(const T & a) { vector<INTERVAL> p; p.push back(0); vector<pwFunc<T>::ptrFct> functions; functions.push back( & f1<T>);functions.push back( & f2<T>); pwFunc<T> fp(p, functions); return fp(a); } ff([-1,2]); Equation: � − 1 . 0 + x Result: x < 0 F f ( v ) = [-2,3]([1,6]) +1 . 0 + x x > 0 E. Auer, A. Rauh University of Duisburg-Essen Applications of Verified Methods for Non-smooth IVPs 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend