applications of computer algebra in the identifiability
play

Applications of computer algebra in the identifiability and - PowerPoint PPT Presentation

Applications of computer algebra in the identifiability and diagnosability studies Nathalie Verdire 1 1 Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, 76600 Le Havre, France CUNY, 2019 My topics/works: Identifiability study and parameter


  1. Applications of computer algebra in the identifiability and diagnosability studies Nathalie Verdière 1 1 Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, 76600 Le Havre, France CUNY, 2019

  2. My topics/works: Identifiability study and parameter estimation (testing an assumption in pharmacokinetic domain) - L. Denis-Vidal, G. Joly-Blanchard 2 Injection of macromolecules 1. Infection of a cell by an extracellular bacterium

  3. My topics/works: Identifiability study and parameter estimation (testing an assumption in pharmacokinetic domain) - L. Denis-Vidal, G. Joly-Blanchard 2 Injection of macromolecules 1. Infection of a cell by an extracellular bacterium Fault diagnosability, fault diagnosis (malfunction in a navigation system) - L. Travé-Massuyès, C. Jauberthie, S Orange

  4. My topics/works: Identifiability study and parameter estimation (testing an assumption in pharmacokinetic domain) - L. Denis-Vidal, G. Joly-Blanchard 2 Injection of macromolecules 1. Infection of a cell by an extracellular bacterium Fault diagnosability, fault diagnosis (malfunction in a navigation system) - L. Travé-Massuyès, C. Jauberthie, S Orange Identifiabiliy, identification, diagnosability in the context of bounded-error uncertain models - L. Travé-Massuyès, C. Jauberthie

  5. My topics/works: Identifiability study and parameter estimation (testing an assumption in pharmacokinetic domain) - L. Denis-Vidal, G. Joly-Blanchard 2 Injection of macromolecules 1. Infection of a cell by an extracellular bacterium Fault diagnosability, fault diagnosis (malfunction in a navigation system) - L. Travé-Massuyès, C. Jauberthie, S Orange Identifiabiliy, identification, diagnosability in the context of bounded-error uncertain models - L. Travé-Massuyès, C. Jauberthie Identifiability in PDE’s models (D. Manceau, L. Denis-Vidal, S. Zhu)

  6. Outline 1 Identifiability Definition Example General result 2 Fault diagnosability and fault diagnosis Definitions Example Link between identifiability and diagnosability Multiple faults Example of a two coupled water tank 3 Conclusion and perspectives 4 Bibliography

  7. Identifiability Definition � ˙ x ( t , p ) = f ( x ( t , p ) , u ( t ) , p ) , Γ p (1) y ( t , p ) = h ( x ( t , p ) , p ) . � x ( t , p ) ∈ R n : state variables at time t , � y ( t , p ) ∈ R m : output vector at time t , � u ( t ) ∈ R r : input vector at time t , � f , h : real functions, analytic on M (an open set of R n ), � p ∈ U P : vector of parameters, U P ⊂ R p : an a priori known set of admissible parameters.

  8. Identifiability Definition � ˙ x ( t , p ) = f ( x ( t , p ) , u ( t ) , p ) , Γ p (1) y ( t , p ) = h ( x ( t , p ) , p ) . � x ( t , p ) ∈ R n : state variables at time t , � y ( t , p ) ∈ R m : output vector at time t , � u ( t ) ∈ R r : input vector at time t , � f , h : real functions, analytic on M (an open set of R n ), � p ∈ U P : vector of parameters, U P ⊂ R p : an a priori known set of admissible parameters. Two problems can be considered: � The forward problem : given p , u , find x and y . � The inverse problem : given y and u , estimate p . 1 Identifiability problem : From the output(s) of the model, is it possible to estimate uniquely the parameter vector p ? If the answer is YES, then the model is said identifiable. Identification problem 2

  9. Identifiability Definition � ˙ x ( t , p ) = f ( x ( t , p ) , u ( t ) , p ) , Γ p (1) y ( t , p ) = h ( x ( t , p ) , p ) . � x ( t , p ) ∈ R n : state variables at time t , � y ( t , p ) ∈ R m : output vector at time t , � u ( t ) ∈ R r : input vector at time t , � f , h : real functions, analytic on M (an open set of R n ), � p ∈ U P : vector of parameters, U P ⊂ R p : an a priori known set of admissible parameters. Two problems can be considered: � The forward problem : given p , u , find x and y . � The inverse problem : given y and u , estimate p . 1 Identifiability problem : From the output(s) of the model, is it possible to estimate uniquely the parameter vector p ? If the answer is YES, then the model is said identifiable. Identification problem 2 ⇒ Input-output method based on the Rosenfeld-Groebner algorithm (implemented in Maple by F . Boulier, CRIStAL) and based on differential algebra approach (Kolchin and al., 1973)

  10. Identifiability Definition Formalization Controlled models ( u � = 0) WITHOUT initial condition; (˜ x , ˜ y ) = unique set of solutions The model is globally identifiable if there exists an input u such that, for all p ∈ U p , one gets  y ( t , p ) � = ∅ , ˜  ⇒ p = ¯ p . (2) ˜ y ( t , p ) ∩ ˜ y ( t , ¯ p ) � = ∅ , ∀ t ≥ 0 , ¯ p ∈ U p  The model is locally identifiable if it is globally identifiable in an open neighborhood v ( p ) ⊂ U p of p .

  11. Identifiability Definition Formalization Controlled models ( u � = 0) WITHOUT initial condition; (˜ x , ˜ y ) = unique set of solutions The model is globally identifiable if there exists an input u such that, for all p ∈ U p , one gets  y ( t , p ) � = ∅ , ˜  ⇒ p = ¯ p . (2) y ( t , p ) ∩ ˜ ˜ y ( t , ¯ p ) � = ∅ , ∀ t ≥ 0 , ¯ p ∈ U p  The model is locally identifiable if it is globally identifiable in an open neighborhood v ( p ) ⊂ U p of p . Controlled model ( u � = 0) WITH initial conditions; ( x , y ) unique solution The model is globally identifiable if there exists an input u such that, for all p , ¯ p ∈ U p , there exists t 1 > 0 such that if for all t ∈ [ 0 , t 1 ] , the equalities y ( t , p ) = y ( t , ¯ p ) implies that p = ¯ p . The model is locally identifiable if it is globally in an open neighborhood v ( p ) ⊂ U p of p .

  12. Identifiability Example Example :  k 12 ( x 2 − x 1 ) − k ν x 1 x 1 ˙ = ,   1 + x 1  ˙ x 2 = k 21 ( x 1 − x 2 ) ,   y = x 1 ,  1 Rosenfeld-Groebner algorithm with the elimination order [ y ] ≺ [ x 1 , x 2 ] : = { k 12 y 2 ˙ y + k 21 k ν y 2 + k 21 y 2 ˙ y + y 2 ¨ y + 2 k 12 y ˙ y + k 21 k ν y + 2 k 21 y ˙ C ( p ) y + k 12 ˙ y + k 21 ˙ y + k ν ˙ y + 2 y ¨ y + ¨ y , x 1 − y , k 12 x 2 y − k 12 y 2 + k 12 x 2 − k 12 y − k ν y − y ˙ y − ˙ y } .

  13. Identifiability Example Example :  k 12 ( x 2 − x 1 ) − k ν x 1 x 1 ˙ = ,   1 + x 1  ˙ x 2 = k 21 ( x 1 − x 2 ) ,   y = x 1 ,  1 Rosenfeld-Groebner algorithm with the elimination order [ y ] ≺ [ x 1 , x 2 ] : = { k 12 y 2 ˙ y + k 21 k ν y 2 + k 21 y 2 ˙ y + y 2 ¨ y + 2 k 12 y ˙ y + k 21 k ν y + 2 k 21 y ˙ C ( p ) y + k 12 ˙ y + k 21 ˙ y + k ν ˙ y + 2 y ¨ y + ¨ y , x 1 − y , k 12 x 2 y − k 12 y 2 + k 12 x 2 − k 12 y − k ν y − y ˙ y − ˙ y } . 2 Keep the IO polynomial ( p = ( k 12 , k 21 , k ν ) , γ ( p ) = ( k 12 + k 21 , k 21 k ν , k 21 + k ν ) ): y + y 2 ¨ y + γ 1 ( p ) ( y 2 ˙ y ) + γ 2 ( p ) ( y 2 + y ) + γ 3 ( p ) ˙ P ( y , p ) = ¨ y + 2 y ¨ y + 2 y ˙ y

  14. Identifiability Example Example :  k 12 ( x 2 − x 1 ) − k ν x 1 x 1 ˙ = ,   1 + x 1  ˙ x 2 = k 21 ( x 1 − x 2 ) ,   y = x 1 ,  1 Rosenfeld-Groebner algorithm with the elimination order [ y ] ≺ [ x 1 , x 2 ] : = { k 12 y 2 ˙ y + k 21 k ν y 2 + k 21 y 2 ˙ y + y 2 ¨ y + 2 k 12 y ˙ y + k 21 k ν y + 2 k 21 y ˙ C ( p ) y + k 12 ˙ y + k 21 ˙ y + k ν ˙ y + 2 y ¨ y + ¨ y , x 1 − y , k 12 x 2 y − k 12 y 2 + k 12 x 2 − k 12 y − k ν y − y ˙ y − ˙ y } . 2 Keep the IO polynomial ( p = ( k 12 , k 21 , k ν ) , γ ( p ) = ( k 12 + k 21 , k 21 k ν , k 21 + k ν ) ): y + y 2 ¨ y + γ 1 ( p ) ( y 2 ˙ y ) + γ 2 ( p ) ( y 2 + y ) + γ 3 ( p ) ˙ P ( y , p ) = ¨ y + 2 y ¨ y + 2 y ˙ y Suppose that y ( t , p ) = y ( t , ¯ p ) : 3 p )) ( y 2 ˙ P ( y , p ) − P ( y , ¯ ( γ 1 ( p ) − γ 1 (¯ y + 2 y ˙ p ) = y ) p )) ( y 2 + y ) +( γ 2 ( p ) − γ 2 (¯ +( γ 3 ( p ) − γ 3 (¯ p )) ˙ y = 0 . Remark: det ( y 2 ˙ y , ( y 2 + y ) , ˙ y + 2 y ˙ y ) = y 2 + y ... y 4 + ( 3 y 2 ¨ y ( y + 1 ) 2 ˙ y 2 ( y + 1 ) 2 ) �≡ 0. − 2 ˙ y ( − ˙ y + 5 y ¨ y + 2 ¨ y ) ˙ y − 3 y ¨

  15. Identifiability Example Example :  k 12 ( x 2 − x 1 ) − k ν x 1 x 1 ˙ = ,   1 + x 1  ˙ x 2 = k 21 ( x 1 − x 2 ) ,   y = x 1 ,  1 Rosenfeld-Groebner algorithm with the elimination order [ y ] ≺ [ x 1 , x 2 ] : = { k 12 y 2 ˙ y + k 21 k ν y 2 + k 21 y 2 ˙ y + y 2 ¨ y + 2 k 12 y ˙ y + k 21 k ν y + 2 k 21 y ˙ C ( p ) y + k 12 ˙ y + k 21 ˙ y + k ν ˙ y + 2 y ¨ y + ¨ y , x 1 − y , k 12 x 2 y − k 12 y 2 + k 12 x 2 − k 12 y − k ν y − y ˙ y − ˙ y } . 2 Keep the IO polynomial ( p = ( k 12 , k 21 , k ν ) , γ ( p ) = ( k 12 + k 21 , k 21 k ν , k 21 + k ν ) ): y + y 2 ¨ y + γ 1 ( p ) ( y 2 ˙ y ) + γ 2 ( p ) ( y 2 + y ) + γ 3 ( p ) ˙ P ( y , p ) = ¨ y + 2 y ¨ y + 2 y ˙ y Suppose that y ( t , p ) = y ( t , ¯ p ) : 3 p )) ( y 2 ˙ P ( y , p ) − P ( y , ¯ ( γ 1 ( p ) − γ 1 (¯ y + 2 y ˙ p ) = y ) p )) ( y 2 + y ) +( γ 2 ( p ) − γ 2 (¯ +( γ 3 ( p ) − γ 3 (¯ p )) ˙ y = 0 . Remark: det ( y 2 ˙ y , ( y 2 + y ) , ˙ y + 2 y ˙ y ) = y 2 + y ... y 4 + ( 3 y 2 ¨ y ( y + 1 ) 2 ˙ y 2 ( y + 1 ) 2 ) �≡ 0. − 2 ˙ y ( − ˙ y + 5 y ¨ y + 2 ¨ y ) ˙ y − 3 y ¨ Study of γ ( p ) − γ (¯ 4 p ) = 0: γ ( p ) − γ (¯ p ) = 0 ⇒ p = ¯ p Conclusion: the model is identifiable.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend