ansto accelerator capabilities for materials
play

ANSTO Accelerator Capabilities for Materials Characterisation - PowerPoint PPT Presentation

ANSTO Accelerator Capabilities for Materials Characterisation Mihail Ionescu, Rainer Siegele, David Cohen Mihail.Ionescu@ansto.gov.au IAEA Vienna 15-19 Sept 2008 Outline: ANSTOs Ion Beam Accelerators Examples from ANSTOs research


  1. ANSTO Accelerator Capabilities for Materials Characterisation Mihail Ionescu, Rainer Siegele, David Cohen Mihail.Ionescu@ansto.gov.au IAEA Vienna 15-19 Sept 2008

  2. Outline: • ANSTO’s Ion Beam Accelerators • Examples from ANSTO’s research projects on the use of accelerators for characterization of materials

  3. ANSTO’s Ion Beam Accelerators ANTARES (Australian National Tandem for Applied Research). • Opened in September 1991. • 10 MV heavy ion machine (HVEE) with 3 ion sources and 5 high energy beamlines (2 IBA and 3 AMS). • Can accelerate most ions in the periodic table (H- U) STAR (Small Tandem for Applied Research). • Opened in January 2005. • 2 MV heavy ion machine (HVEE) with 3 ion sources and 3 high energy beamlines (2 IBA and 1 AMS 14C). • Can accelerate (H, He, C)

  4. Ion Beam Accelerators Usage • To provide accelerator based expertise for: - internally and externally driven research with Australian Universities, CSIRO, Local and State Governments, industry and international organisations including the International Atomic Energy Agency (IAEA) - training for local and international researchers, workshops, fellowships etc for developing countries in our region • Main techniques include: - Ion Beam Analysis (IBA): PIXE, PIGE, RBS, ERDA, RToF, NRA and Heavy ion µ-probe (X-ray mapping; lithography; IBIC) - Accelerator Mass Spectrometry (AMS) – 14 C, 10 Be, 26 Al, 129 I, Actinides

  5. ANTARES AMS: Microprobe Actinides NEC alphatross ANTARES 10 MV Tandem 860 HVEE 846 single multi sample AMS: C, Be, Al IBA-ToF • Microprobe: µ -PIXE; µ -RBS • ToF: Heavy ion ERDA; RBS; ion implantation 10m • AMS: 14 C, 10 Be, 26 Al, 129 I, Actinides

  6. STAR 846B AMS 14 C Recombinator Ion Source Ionisation IBA chamber Beam line 2 358 Ion Source 2MV HVEE Tandetron Accelerator IBA Beam line 1 5m • SIBA1: Automated PIXE; PIGE; RBS; PESA • SIBA2: He-ERDA; Variable angle RBS; NRA • AMS ( 14 C) dating

  7. IBA Materials Projects at ANSTO • Elemental analysis (PIXE, PIGE) • Characterization of thin films near-surface layers and interfaces: - thickness (RBS, NRA, variable angle RBS) - depth profile of elements (RBS, NRA, ERDA) - defects (variable angle RBS-channelling) - 2D mapping ( µ -PIXE; µ -RBS) • Modification of thin films, near-surface layers and interfaces: - ion implantation (conductive polymers; ZnO/STO; other) • Device testing (IBIC, single event upset) Can do: • Materials testing for radiation damage • Micro-machining • Ion beam induced chemical reactions

  8. PIXE, PIGE: Aerosols in Asia PIXE, PIGE: Aerosols in Asia • Large throughput of samples • PMF→Source identification • Events correlation (back trajectories) • Large database Lead vs Bromine Mascot 1992-2000 1200 1000 Pb=(2.12±0.30)*Br +(27±29) Pb (ng/m 3 ) R 2 =0.98 800 600 400 Sado 200 Is. 0 D 0 100 200 300 400 500 us Br (ng/m 3 ) Cheju Mascot 1992-2000 t Is. 1000 S 900 800 3 ) Lead (ng/m 700 600 500 Hong 400 300 Kong Hanoi 200 100 0 Manila 0 1 2 3 4 5 6 7 8 9 0 9 9 9 9 9 9 9 9 9 9 0 - - - - - - - - - - - c c c c c c c c c c c e e e e e e e e e e e D D D D D D D D D D D

  9. PIXE, PIGE: Study of Archaeological Artefacts [1] • Non destructive • Large throughput • PMF→Source identification • Ancient trade routs identified [1] T. Doelman, R. Torrence, V. Popov, M. Ionescu, N. Kluyev, I. Sleptsov, I. Pantyukhina, P. White and M. Clements, Geoarchaeology 23, 234, (2008)

  10. PIXE Bremsstrahlung [1] Be 1843 µ g/cm 2 • Important for quantitative analysis • Theoretical background calculated for 3MeV protons on C [2] C 1767 µ g/cm 2 • Data corrected for self absorption; detector efficiency; γ -ray background component and normalised to unit charge ( µ C), unit solid angle (Sr) and unit target thickness ( µ g/cm 2 ) • Normalised yield (Yld) was fitted to a 9-th order polynomial [1] D. D. Cohen, E. Stelcer, R. Siegele, M. Ionescu, M. Prior, NIM B 266, ln(Yld)=a 0 +a 1 ln E x +a 2 (ln E x ) 2 +…+a 9 (lnE x ) 9 1149-1153, (2008) [2] K. Murozono, K. Ishii, H. Yamazaki, S. Matsuyama, S. Iwasaki, NIM B 150, 76, (1999)

  11. Heavy Ion Microprobe Heavy Ion Microprobe • Spot sizes of 1-10µm • 1-10 nA target current Focussing of ions with Me/q 2 = 100 (H to U) • • 2D mapping • Applications: � 2D mapping ( µ -PIXE, µ -RBS) � Nuclear reactions � Resonances � Heavy Ion Elastic Recoil Detection 1-2 µm spot size at 100 pA; 3MeV H � IBIC � Ion Beam Lithography Au Cr 50 x 50 µm

  12. Elemental Mapping using the Ion Microprobe Elemental Mapping using the Ion Microprobe sea spray FeS ores Exposed Filter cars PIXE Spectrum of Aerosol Filter Unexposed Filter 50µm soil

  13. [1] by IBIC [1] Characterization of Microdosimeters Microdosimeters by IBIC Characterization of Charge collection maps of 20 MeV C 4+ beams on Silicon on Insulator (SOI) micro-dosimeters K Ca K Ni [1] I. M. Cornelius, R. Siegele, I. Orlic, A. B. Rosenfeld, D. D. Cohen, NIM B 210, 191, (2003)

  14. Single Ion irradiation [1] E LET elect LET nucl Ion (MeV) (eV/nm) (eV/nm) Low Medium High H 2 15 <0.1 MARC He 2 150 0.1 MARC PMMA C 30 44 0.3 ANSTO Si C 9 760 0.8 ANSTO F 8 1380 2.8 ANSTO Cu 6 1460 77 ANSTO • Damage in tracks depend on LET • Diameter of a damage track is F damage AFM tracks ~10nm • Used in single ion implant and high resolution IB lithography 100nm [1] A. Alves, P. Reichart, R. Siegele, P. N. Johnston, D. N. Jamieson, NIM B 249, 730, (2006)

  15. Ni Uptake in Plants [1] • Study of Hybantus Floribundus- a Ni hyperaccumulator • Thin sections (~10 µm) freeze substitution • Localization of Ni in various parts of the plant Leaf cross-section scan : - current 0.8 nA - spot size 3 µm - count rate 2 kHz 50 µm 100 µm 100 µm K Ca Ni [1] R. Siegele, A. G. Kachenko, N. P. Bhatia, Y. D. Wang, M. Ionescu, B. Singh, A. J. M. Baker, D. D. Cohen, X-ray Spectrometry 37, 133, (2008)

  16. RBS: multi-layer MgB 2 /Mg 2 Si/Al 2 O 3 [1] 1+ • Role of Mg 2 Si layers in increasing the pinning 4 2.0x10 2MeV He C-Al 2 O 3 o 15 • comparison with single MgB 2 film o 75 4 1.5x10 8x 15 nm Mg 2 Si • Increase in activation energy U 0 9x 80 nm MgB 2 Yield [cts/2 µ C] • Increase in anisotropy of U 0 4 1.0x10 experimental simulated B O 3 Mg 5.0x10 Al Si 0.0 50 100 150 200 250 300 Channel No [1] Y. Zhao, M. Ionescu, P. Munroe, S. X. Dou, APL 88 , 012502, (2006)

  17. RBS: channelling in Si 700 Ti Exp • Study of Al-Ti-C MAX phase [1] O in MgO 600 Simul C C O • Part of C diffused in Si (001) substrate 500 Mg Yield [cts/1.2 µ C • A buried layer of C by channelling of 2MeV He + in Si Al Ti 400 Nd Mg • Substrate replaced by MgO 300 200 Al Nd Surface 100 0 50 100 150 200 250 300 350 + (111) 1MeV He Channel No 5000 Detector 4000 RBS yield [cts/200 µ C] (111) 3000 + 1MeV He (101) (101) C 2000 1000 Detector 0 Surface 200 400 600 800 1000 1200 1400 Energy [keV] [1] J. Rosen, P. O. A. Persson, M. Ionescu, A. Kondyurin, D. R. McKenzie, M. M. M. Bilek, APL 92 , 064102, (2008)

  18. HeERDA-SBD: Hydrogen in SiN x thin film [1] 60 Si Wafer He thin SiN 50 recoiled (He) M 1 (He) x E 0x thick SiN Surface H M 2 (H) 40 E 0 E 1x H Yield [counts] α 30 H SiN x :H Si β θ 20 E 2 E 1 At depth x: At the surface: 2 E d 4 M M cos θ  x dE  scattered (He) 1 2 0 x = − E = E E k E 1  0  1 0 x 10 2  cos α dx  ( M + M ) 1 2 dE Filter x 1 x E = E − ∆ E ( E ) E E = − d 1 foil 1 2 1 x cos β dx recoiled (H) 0 E = E − ∆ E ( E ) d 2 foil 2 Energy Detector 0 200 400 600 800 1000 Y [ cts ] cos α 2 N [ at / cm ] = N- number of ions incident on sample surface d Energy [keV] σ N Ω i Ω - detector solid angle d Ω σ - scattering cross section 2 2 + d σ [ Z Z e ( M M )] 1 2 1 2 = 2 2 Ω d 4 E M cos θ 0 2 25 20 SiN70 15 10 5 2 ] 0 • Passivating role of Hydrogen in thin 15 H/cm 25 SiN20 20 SiN x films 15 Hydrogen [x10 10 • Depth of analysis: up to few 100nm 5 0 25 • Depth resolution: few nm 20 Si 15 10 • Sensitivity: ~0.1 at% 5 0 0 200 400 600 800 1000 15 at/cm 2 ] Depth [x10 [1] M. Ionescu, B. Richards, K. McIntosh, R. Siegele, E. Stelcer, O Hawas, D. D. Cohen, T. Chandra, Materials Science Forum Vols. 539-543, pp. 3551-3556, (2007)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend