an efficient probabilistic algorithm to compute the real
play

An efficient probabilistic algorithm to compute the real dimension - PowerPoint PPT Presentation

An efficient probabilistic algorithm to compute the real dimension of a real algebraic set. JNCF 2014 Ivan Bannwarth 1 Mohab Safey El Din 12 1 Universit Pierre et Marie Curie INRIA, POLSYS Team LIP6 - CNRS 2 Institut Universitaire de France


  1. An efficient probabilistic algorithm to compute the real dimension of a real algebraic set. JNCF 2014 Ivan Bannwarth 1 Mohab Safey El Din 12 1 Université Pierre et Marie Curie INRIA, POLSYS Team LIP6 - CNRS 2 Institut Universitaire de France 4th November 2014 Ivan Bannwarth Real dimension 4th November 2014 1 / 16

  2. Real dimension Let S be the semi-algebraic set : S = { x ∈ R n | f 1 ( x ) = · · · = f p ( x ) = 0 , g 1 ( x ) > 0 , . . . , g s ( x ) > 0 } . with f 1 , . . . , f p , g 1 , . . . , g s in R [ X 1 , . . . , X n ] Definition The real dimension of S is the maximum integer d such that in generic coordinates , Interior ( π d ( S )) � = ∅ where π d : ( x 1 , . . . , x n ) �→ ( x 1 , . . . , x d ) . Ivan Bannwarth Real dimension 4th November 2014 2 / 16

  3. Real dimension Let S be the semi-algebraic set : S = { x ∈ R n | f 1 ( x ) = · · · = f p ( x ) = 0 , g 1 ( x ) > 0 , . . . , g s ( x ) > 0 } . with f 1 , . . . , f p , g 1 , . . . , g s in R [ X 1 , . . . , X n ] Definition The real dimension of S is the maximum integer d such that in generic coordinates , Interior ( π d ( S )) � = ∅ where π d : ( x 1 , . . . , x n ) �→ ( x 1 , . . . , x d ) . S Ivan Bannwarth Real dimension 4th November 2014 2 / 16

  4. Real dimension Let S be the semi-algebraic set : S = { x ∈ R n | f 1 ( x ) = · · · = f p ( x ) = 0 , g 1 ( x ) > 0 , . . . , g s ( x ) > 0 } . with f 1 , . . . , f p , g 1 , . . . , g s in R [ X 1 , . . . , X n ] Definition The real dimension of S is the maximum integer d such that in generic coordinates , Interior ( π d ( S )) � = ∅ where π d : ( x 1 , . . . , x n ) �→ ( x 1 , . . . , x d ) . S π 2 Ivan Bannwarth Real dimension 4th November 2014 2 / 16

  5. Motivations Motivations Applications in computational real algebraic geometry. Ivan Bannwarth Real dimension 4th November 2014 3 / 16

  6. Motivations Motivations Applications in computational real algebraic geometry. Computing the set of realizable sign conditions. Barone/Basu 2012 Computing a bound on the number of connected component of real algebraic sets. Barone/Basu 2013 Ivan Bannwarth Real dimension 4th November 2014 3 / 16

  7. Motivations Motivations Applications in computational real algebraic geometry. Applications in mechanics. Ivan Bannwarth Real dimension 4th November 2014 3 / 16

  8. Motivations Motivations Applications in computational real algebraic geometry. Applications in mechanics. Overconstraint analysis on spatial 6-link loops, Jin/Yang,2002 Ivan Bannwarth Real dimension 4th November 2014 3 / 16

  9. State-of-the-art Let S = { x ∈ R n | f 1 ( x ) = · · · = f p ( x ) = 0 , g 1 ( x ) > 0 , . . . , g s ( x ) > 0 } with maximum degree D and real dimension d . Ivan Bannwarth Real dimension 4th November 2014 4 / 16

  10. State-of-the-art Let S = { x ∈ R n | f 1 ( x ) = · · · = f p ( x ) = 0 , g 1 ( x ) > 0 , . . . , g s ( x ) > 0 } with maximum degree D and real dimension d . Collins’s Cylindrical Algebraic Decomposition algorithm [ ∼ 70’s] → (( s + 1 ) D ) 2 O ( n ) Ivan Bannwarth Real dimension 4th November 2014 4 / 16

  11. State-of-the-art Let S = { x ∈ R n | f 1 ( x ) = · · · = f p ( x ) = 0 , g 1 ( x ) > 0 , . . . , g s ( x ) > 0 } with maximum degree D and real dimension d . Collins’s Cylindrical Algebraic Decomposition algorithm [ ∼ 70’s] → (( s + 1 ) D ) 2 O ( n ) Vorobjov, Basu/Pollack/Roy, Koiran’s algorithms [ ∼ 90’s] → (( s + 1 ) D ) O ( d ( n − d )) Ivan Bannwarth Real dimension 4th November 2014 4 / 16

  12. State-of-the-art Let S = { x ∈ R n | f 1 ( x ) = · · · = f p ( x ) = 0 , g 1 ( x ) > 0 , . . . , g s ( x ) > 0 } with maximum degree D and real dimension d . Collins’s Cylindrical Algebraic Decomposition algorithm [ ∼ 70’s] → (( s + 1 ) D ) 2 O ( n ) Vorobjov, Basu/Pollack/Roy, Koiran’s algorithms [ ∼ 90’s] → (( s + 1 ) D ) O ( d ( n − d )) No information on the constant in the exponent. Ivan Bannwarth Real dimension 4th November 2014 4 / 16

  13. State-of-the-art Let S = { x ∈ R n | f 1 ( x ) = · · · = f p ( x ) = 0 , g 1 ( x ) > 0 , . . . , g s ( x ) > 0 } with maximum degree D and real dimension d . Collins’s Cylindrical Algebraic Decomposition algorithm [ ∼ 70’s] → (( s + 1 ) D ) 2 O ( n ) Vorobjov, Basu/Pollack/Roy, Koiran’s algorithms [ ∼ 90’s] → (( s + 1 ) D ) O ( d ( n − d )) No information on the constant in the exponent. There is no efficient implementation today. Ivan Bannwarth Real dimension 4th November 2014 4 / 16

  14. State-of-the-art Let S = { x ∈ R n | f 1 ( x ) = · · · = f p ( x ) = 0 , g 1 ( x ) > 0 , . . . , g s ( x ) > 0 } with maximum degree D and real dimension d . Collins’s Cylindrical Algebraic Decomposition algorithm [ ∼ 70’s] → (( s + 1 ) D ) 2 O ( n ) Best implementation but limited ( n ≤ 3 for non-trivial examples). Vorobjov, Basu/Pollack/Roy, Koiran’s algorithms [ ∼ 90’s] → (( s + 1 ) D ) O ( d ( n − d )) No information on the constant in the exponent. There is no efficient implementation today. Ivan Bannwarth Real dimension 4th November 2014 4 / 16

  15. Contribution Contribution New algorithm for hypersurfaces V R ( f ) (defined by f = 0) 1 General Observation In the real case, ⇒ f 2 1 ( x ) + · · · + f 2 f 1 ( x ) = · · · = f p ( x ) = 0 ⇐ p ( x ) = 0 Ivan Bannwarth Real dimension 4th November 2014 5 / 16

  16. Contribution Contribution New algorithm for hypersurfaces V R ( f ) (defined by f = 0) 1 Best known complexity class : 2 � D 3d ( n − d )+ 6 n + 3 � � O Input : f : a polynomial of degree D d : the real dimension of V R ( f ) . Ivan Bannwarth Real dimension 4th November 2014 5 / 16

  17. Contribution Contribution New algorithm for hypersurfaces V R ( f ) (defined by f = 0) 1 Best known complexity class : 2 � D 3d ( n − d )+ 6 n + 3 � � O Probabilistic algorithm 3 Probabilistic subroutines → Generic change of variables → One point per connected components and test of emptiness. Ivan Bannwarth Real dimension 4th November 2014 5 / 16

  18. Contribution Contribution New algorithm for hypersurfaces V R ( f ) (defined by f = 0) 1 Best known complexity class : 2 � D 3d ( n − d )+ 6 n + 3 � � O Probabilistic algorithm 3 Efficient implementation 4 Checking procedures Grobner basis instead of geometric resolution Example reached : n = 6, D = 8, 130 sec. Ivan Bannwarth Real dimension 4th November 2014 5 / 16

  19. Previous approach : Quantifier Elimination (QE) ∃ Z ∈ R , X 2 + Y 2 + Z 2 − 1 = 0 S π 2 Compute Φ quantifier free formula defining π i ( S ) . 1 X 2 + Y 2 − 1 ≤ 0 π 2 ( S ) Ivan Bannwarth Real dimension 4th November 2014 6 / 16

  20. Previous approach : Quantifier Elimination (QE) ∃ Z ∈ R , X 2 + Y 2 + Z 2 − 1 = 0 S π 2 Compute Φ quantifier free formula defining π i ( S ) . 1 X 2 + Y 2 − 1 ≤ 0 π 2 ( S ) Compute ˜ Φ with strict inequalities defining an open 2 dense semi-algebraic subset of π i ( S ) . Ivan Bannwarth Real dimension 4th November 2014 6 / 16

  21. Previous approach : Quantifier Elimination (QE) ∃ Z ∈ R , X 2 + Y 2 + Z 2 − 1 = 0 S π 2 Compute Φ quantifier free formula defining π i ( S ) . 1 X 2 + Y 2 − 1 ≤ 0 π 2 ( S ) Compute ˜ Φ with strict inequalities defining an open 2 dense semi-algebraic subset of π i ( S ) . Test if this set is empty. 3 Ivan Bannwarth Real dimension 4th November 2014 6 / 16

  22. Previous approach : Quantifier Elimination (QE) ∃ Z ∈ R , X 2 + Y 2 + Z 2 − 1 = 0 S π 2 Compute Φ quantifier free formula defining π i ( S ) . 1 X 2 + Y 2 − 1 ≤ 0 Compute ˜ π 2 ( S ) Φ with strict inequalities defining an open 2 dense semi-algebraic subset of π i ( S ) . Test if this set is empty. 3 New appoach : Variant of QE (Hong/Safey 12) Compute Boundary ( π i ( S )) . 1 S π 2 → Hypotheses : the algebraic variety assoc. to the polynomial equations is smooth and equidimensional, the projection of S is proper. Ivan Bannwarth Real dimension 4th November 2014 6 / 16

  23. Previous approach : Quantifier Elimination (QE) ∃ Z ∈ R , X 2 + Y 2 + Z 2 − 1 = 0 S π 2 Compute Φ quantifier free formula defining π i ( S ) . 1 X 2 + Y 2 − 1 ≤ 0 Compute ˜ π 2 ( S ) Φ with strict inequalities defining an open 2 dense semi-algebraic subset of π i ( S ) . Test if this set is empty. 3 New appoach : Variant of QE (Hong/Safey 12) Compute Boundary ( π i ( S )) . 1 S π 2 Compute one point per connected component. 2 → Hypotheses : the algebraic variety assoc. to the polynomial equations is smooth and equidimensional, the projection of S is proper. Ivan Bannwarth Real dimension 4th November 2014 6 / 16

  24. Previous approach : Quantifier Elimination (QE) ∃ Z ∈ R , X 2 + Y 2 + Z 2 − 1 = 0 S π 2 Compute Φ quantifier free formula defining π i ( S ) . 1 X 2 + Y 2 − 1 ≤ 0 Compute ˜ π 2 ( S ) Φ with strict inequalities defining an open 2 dense semi-algebraic subset of π i ( S ) . Test if this set is empty. 3 New appoach : Variant of QE (Hong/Safey 12) Compute Boundary ( π i ( S )) . 1 S π 2 Compute one point per connected component. 2 Lift the fibers. 3 → Hypotheses : the algebraic variety assoc. to the polynomial equations is smooth and equidimensional, the projection of S is proper. Ivan Bannwarth Real dimension 4th November 2014 6 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend