affleck dine leptogenesis via multiscalar evolution in a
play

Affleck-Dine leptogenesis via multiscalar evolution in a seesaw - PowerPoint PPT Presentation

Affleck-Dine leptogenesis via multiscalar evolution in a seesaw model (ICRR, Univ of Tokyo) Dec. 11. 2007


  1. 宇宙線研究所理論研究会「初期宇宙と標準模型を超える物理」 高山 務 東京大学宇宙線研究所 Affleck-Dine leptogenesis via multiscalar evolution in a seesaw model (ICRR, Univ of Tokyo) Dec. 11. 2007 共同研究者 : 瀬波大土 JCAP11(2007)015 M.Senami, TT

  2. ・ Outline 1 Introduction ・ Leptogenesis via Affleck-Dine mechanism: an alternative to thermal leptogenesis in SUSY N only (Allahverdi & Drees, 2004) ˜ multiscalar -direction and RH-sneutrino LH u 2 Set-up ・ Scalar potential ・ initial condition 3 Evolution of scalar fields 4 Evolution of asymmetry 5 Constraints 6 Resultant baryon asymmetry 7 Summary

  3. 1 . Introduction Standard Model (SM) + Heavy right-handed Majorana neutrino possible solution of two unsolved problem of SM Origin of small neutrino mass 1) m ν � O (0 . 1)eV seesaw mechanism Majorana mass: Dirac mass: m ¯ M ¯ L ν R ν R : right-handed neutrino ν R ν R lighter mass eigenvalue ∼ m 2 M 2) Origin of baryon asymmetry − 0 . 4 × 10 − 11 (WMAP) n B baryon-to-entropy ratio: = 8 . 7 +0 . 3 s example: thermal leptogenesis

  4. 1 . Introduction ・ sufficient baryon asymmetry requires T R > M > 10 9 GeV in SUSY, gravitino is overproduced unless T R < 10 8 GeV alternatives ? many non-thermal leptogenesis scenarios are considered... Affleck-Dine leptogenesis from right-handed sneutrino � � � � 1 1 φ 0 ・ -flat direction LH u L = , H u = √ 0 √ φ 2 2  LH u -flat direction has large vev   AD mechanism in multiscalar evolution (Senami & Yamamoto, 2003)  LH u -flat direction has vanishing vev   - flat direction is irrelevant? (Allahverdi & Drees, 2004) LH u 

  5. 1 . Introduction: Affleck-Dine mechanism complex scalar field with baryon (or lepton) number φ 1 total baryon (or lepton) number in homogeneous condensate of φ φ ∗ φ − φ ∗ ˙ φ ) = 2 | φ | 2 ˙ n φ = i ( ˙ φ = | φ | e i θ n = n φ − ¯ θ “angular momentum” of φ baryon (lepton) number rotational motion after inflation Im( φ ) baryon (lepton) number in condensate φ - ( -) conserving decay B L Re( φ ) baryon (lepton) number in SM particles

  6. 1 . Introduction Allahverdi & Drees’s scenario (brief review) N | 2 + C I H 2 | ˜ N | 2 + ( Bm 3 / 2 ˜ N 2 + h.c. ) + ( bH ˜ N 2 + h.c. ) V ( ˜ 0 | ˜ N ) = m 2 ・ asymmetry is produced via Affleck-Dine mechanism n ˜ N − n ˜ N ∗ ・ SM sector lepton number n ˜ N − n ˜ N ∗ -violating decay of ˜  N CP  or SUSY-breaking from thermal effect  thermal mass ∆ m 2 B = 2 ∆ m 2 L � = Γ ˜ Γ ˜ N → ¯ N → H u ˜ F H u ¯ ˜ L bosonic, fermionic, ∆ L = 1 ∆ L = − 1 ・ asymmetry is oscillating: n ˜ N ∗ ≃ t − 2 M − 1 N N 2 0 sin(2 Bm 3 / 2 t ) δ e ff N − n ˜ tuning is needed (decay at maximum) | B | m 3 / 2 ≃ Γ ˜ N assumption: -direction does not contribute (always ) � φ � = 0 LH u due to interaction with , -flat direction gets large value! ˜ N LH u

  7. 2 . Set-up of the model: scalar potential 2 . Set-up superpotential: W = W MSSM + y ν NLH u + M N λ 2 N 2 + N 4 4 M Pl m ν = y 2 ν v 2 seesaw mechanism: · M N N ) = y 2 N | 2 + λ 2 4 | φ | 4 + M N | ˜ N | 2 + y 2 V ( φ , ˜ ν | φ | 2 | ˜ | ˜ N | 6 ν M 2 F-term Pl �� y ν � � N ∗ + y ν λ N ∗ 3 + λ M N cross term 2 M N φ 2 ˜ φ 2 ˜ N ˜ ˜ N ∗ 3 + h.c. + in F-term 2 M Pl M Pl + c φ H 2 | φ | 2 − c N H 2 | ˜ N | 2 Hubble-induced SUSY breaking mass term �� bH � � N 2 + a y y ν N + a λ λ H φ 2 ˜ 2 M N ˜ H ˜ N 4 + + h.c. 2 4 M Pl Hubble-induced SUSY breaking + V th ( φ ) thermal-mass correction A- and B-term ※ , | a | ∼ 1 , | b | ∼ 1 c φ ∼ 1 > 0 , c N ∼ 1 > 0 � � � � 1 1 φ 0 φ ˜ LH u : direction N : RH-sneutrino L = , H u = √ 0 √ φ 2 2

  8. 2 . Set-up of the model: initial conditions NR F-term can not be during the inflation, H ≫ M N used to trap ˜ N ini N : displaced from the origin ˜ ・ radial direction: | ˜ N ini | = M GUT D-term (Hubble-induced mass and D-term) +Hubble ※ is assumed M N / λ > 1 . 2 × 10 14 GeV NR F-term +Hubble ・ phase direction can either be randomly displaced from B-term minima  ( case)  H inf ≫ M N F-term | ˜ N | or, trapped at B-term minima ( case)  H inf � M N M GUT ※ hereafter, M GUT = 10 16 GeV : fixed at the origin due to large effective mass φ m e ff ∼ y ν M GUT � φ � hor ∼ H H φ has quantum fluctuation around the origin 2 π m e ff

  9. ・ ・ ・ 3 . Evolution of scalar fields ① during inflation: H = H inf > M N � bH � N | 2 + N 2 + h.c. N ∼ − c N H 2 | ˜ 2 M N ˜ V ˜ + D − term due to balance between ˜ N Hubble-induced mass and D-term, | ˜ N | ∼ M GUT phase-direction is assumed to be trapped at the minimum of B-term contribution V φ ≃ c φ H 2 | φ | 2 + y 2 ν | ˜ N | 2 | φ | 2 is trapped at the origin φ φ

  10. 3 . Evolution of scalar fields ※ in general, Hubble-induced A- and B-terms ② after inflation: H < M N are effective only during inflation � λ M N � N | 2 + N ∗ 3 + h.c. N | ˜ N ˜ ˜ N ≃ M 2 V ˜ M Pl | ˜ ・ oscillates with ˜ N | ∝ H N ˜ N ・ cross term in F-term contribution serves as a source of asymmetry ・ displacement between B-term and cross term gives -violation CP � y ν � V φ ≃ c φ H 2 | φ | 2 + y 2 N | 2 | φ | 2 + 2 M N φ 2 ˜ N ∗ + h.c. ν | ˜ is trapped at the origin φ ・ φ

  11. 3 . Evolution of scalar fields in general, m 2 I, e ff | δ I | 2 inflaton: , : oscillating H 2 ≃ I = � I � + δ I δ I 3 M 2 Pl “Hubble-induced” - or -terms A ∝ δ I B due to rapid oscillation of , these terms effectively vanish δ I ※ higher order terms of can give effectively non-vanishing - or -terms ∝ ( δ I ) 2 ∂ I W A B however, these terms decrease rapidly � � a  for example, K ( I, φ ) = I † I + φ † φ + I † φφ + h.c. 2 M Pl  W ( I ) = I { v 2 − gI n / ( n + 1) } (new inflation)  V ∋ − aW φ φ † e K F ∗ + h.c. = aW φ φ † e K 2 v δ I † − aW φ φ † e K ( δ I † ) 2 ¯  I + h.c. M Pl M Pl M Pl  H 2 ≃ 4 v 2 | δ I | 2  3 M 2 Pl

  12. ・ ・ ・ 3 . Evolution of scalar fields ③ destabilization: ※ Allahverdi & Drees did not consider this process � λ M N � N | 2 + N ∗ 3 + h.c. N | ˜ N ˜ ˜ N ≃ M 2 V ˜ M Pl | ˜ after and decrease sufficiently, N | H ˜ N N | 2 + c φ H 2 y ν M N | ˜ ν | ˜ N | ∼ y 2 � y ν � N | 2 | φ | 2 + 2 M N φ 2 ˜ N ∗ + h.c. ν | ˜ V φ ≃ y 2 + y 2 ν | φ | 4 / 4 two minima appear in opposite directions φ minimize the cross term these two minima are determined by ˜ N position of these minima rotate together with the rotation of ˜ N

  13. ・ ・ 3 . Evolution of scalar fields N | 2 + c φ H 2 ④ after destabilization: H < M N , y ν M N | ˜ ν | ˜ N | > y 2 � y ν � N | 2 + y 2 N | 2 | φ | 2 + 2 M N φ 2 ˜ N ∗ + h.c. N | ˜ ν | ˜ N ≃ M 2 V ˜ oscillates around the minimum ˜ N ˜ N determined by rotating φ � y ν � N | 2 | φ | 2 + 2 M N φ 2 ˜ N ∗ + h.c. ν | ˜ V φ ≃ y 2 + y 2 ν | φ | 4 / 4 oscillates around one of minima φ φ determined by the cross term ・ to which minima falls is determined by φ quantum fluctuation spatially inhomogeneous

  14. ・ ・ 3 . Evolution of scalar fields ˜ N = y 2 ⑤ after decay of : N H < Γ ˜ ν M N / (4 π ) ˜ ( friction term dominates the evolution of ) N after the condensate of decays, ˜ N ˜ N is fixed at the minima ˜ N V φ , e ff ≃ y 4 | φ | 6 ν + V th ( φ ) M 2 4 N oscillates around the origin φ φ ・ the direction of rotation is determined by the rotation of at ② ˜ N

  15. ⑤ ① ② ③ ④ 3 . Evolution of scalar fields: numerical result evolution of scalar fields (numerical calculation) 10 17 10 16 | ˜ N | 10 15 10 14 field [GeV] 10 13 10 12 10 11 | φ | 10 10 10 9 10 8 10 7 10 6 10 13 10 12 10 11 10 10 10 9 10 8 10 7 10 6 10 5 10 4 H [GeV] M N = 10 11 GeV , y ν = 10 − 1 , T R = 2 × 10 6 GeV c φ = c N = 1 , λ = 10 − 4

  16. 3 . Evolution of scalar fields: remarks ※ Remarks: Allahverdi & Drees did not consider destabilization of φ we reconsidered this scenario in ② , must not be trapped at the minima of F-term contribution ˜ N N | 4 + λ 2 N | 2 − 2 λ M N N | ˜ | ˜ | ˜ V N,F NR = M 2 N | 6 M 2 M Pl Pl M N / λ > 1 . 2 × 10 14 GeV is needed φ final direction of rotation of is determined by the rotation of in ② ˜ N non-vanishing is generated L φ after averaging over initial quantum fluctuation of φ

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend