advanced nuclear energy systems heat transfer issues and
play

Advanced Nuclear Energy Systems: Heat Transfer Issues and Trends - PowerPoint PPT Presentation

Advanced Nuclear Energy Systems: Heat Transfer Issues and Trends Michael Corradini Wisconsin Institute of Nuclear Systems Nuclear Engr. & Engr. Physics University of Wisconsin - Madison n i I s n n s o t i c t s u i W t e


  1. Advanced Nuclear Energy Systems: Heat Transfer Issues and Trends Michael Corradini Wisconsin Institute of Nuclear Systems Nuclear Engr. & Engr. Physics University of Wisconsin - Madison n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  2. ENERGY SUSTAINABILITY Conditions Needed for Energy Sustainability: � Economically feasible technology � Minimal by-product streams � Acceptable land usage � “Unlimited” supply of energy resource � Neither the power source nor the technology to exploit it can be controlled by a few nations/regions Nuclear energy systems meet these conditions and can be part of the solution for future energy growth (Electricity growth estimates range 1 - 4.5%/yr) n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  3. Evolution of Nuclear Power Systems Generation I Generation I Early Prototype Generation II Generation II Reactors Commercial Power Generation III Generation III Reactors Advanced Generation IV Generation IV LWRs Enhanced Enhanced • • Safety Safety More More • • economical economical Minimized Minimized • • •Shippingport Wastes Wastes •LWR: PWR/BWR •Dresden,Fermi-I Proliferation Proliferation •System 80+ •AP1000 • • •Magnox •CANDU Resistance •ABWR •ESBWR Resistance •VVER/RBMK Gen III Gen I Gen II Gen IV n i I s n n s o t i c 1960 1970 1980 1990 2000 2010 2020 2030 t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  4. Advanced Light Water Reactors: AP1000-Enhanced Passive Safety n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  5. Advanced Light Water Reactors: ESBWR-Simplified Operation & Safety Natural Circulation in the Vessel Passive Safety Systems n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  6. Advanced Light Water Reactors: Multiphase Heat Transfer Issues � Passive systems can simplify construction and operation but may complicate engr. analyses � Natural-circulation multiphase flow in complex geometries (plant geom. dependent) � Condensation heat transfer with non-condensible gases in reactor containment � Multiphase/multicomponent heat transfer in safety analyses beyond the ALWR design base � In-vessel lower head cooling & Ex-vessel debris coolability n i I s n n s � Multiphase/multicomponent direct-contact heat-exchange o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  7. A More Advanced LWR The next logical step in path toward simplification ? ABWR BWR/6 PWR Steam g SCWR n i I s n n s o t ESBWR i c t A boiling water reactor s u i W t …without the boiling. e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  8. SUPERCRITICAL WATER REACTOR n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  9. Heat Transfer in SCW Reactor: Absence of boiling crisis (CHF), but with heat transfer degradation 1400 40000 Jackson: 1.53 Jackson: 1.34 1300 Jackson: 1.23 35000 Bishop: 1.23 Bishop: 1.34 1200 30000 Bishop: 1.53 Qlinear 1100 Linear heat generation [W/m] 25000 Temperature [K] 1000 20000 900 15000 800 10000 700 P/D 5000 600 n i I s n n s o t i c t 500 0 s u i W t 0 0.5 1 1.5 2 2.5 3 e Height of the core [m] O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  10. SCW Flow Control and Instabilities 900 110 800 100 700 90 600 80 Temperature ( o C) G (kg/m 2 s) 500 70 400 60 300 50 200 40 M ass Velocity Hot Side Tem perature 100 30 0 20 0 5 10 15 20 25 30 n i I s n n s Power (kW ) o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  11. Nuclear Fuel Recycle Advanced, Proliferation-Resistant Recycling AFCI Spent Fuel From Commercial Plants Advanced Separations Direct LWRs/ALWRs Disposal Conventional Reprocessing PUREX Gen IV Fuel Fabrication Pu Uranium Gen IV Fast Reactors Spent MO X Fuel ADS Transmuter LWRs/ALWRs Repository Repository Once Through Repository U and Pu Fuel Cycle Less U and Pu Trace U and Pu Actinides Actinides Trace Actinides Fission Products Fission Products Less Fission Products n i I s n n s European/Japanese o t Advanced Proliferation Resistant i c t Fuel Cycle s u Fuel Cycle i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  12. Liquid-Metal-Cooled Fast Reactor (e.g. LFR) Characteristics • Pb or Pb/Bi coolant • 550°C to 800°C outlet temperature • 120–400 MWe Key Benefit • Waste minimization and efficient use of uranium resources n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  13. Liquid Metal-Water Direct Contact HX Steam Advantages : - Vigorous interaction between the liquid metal and the water L sup - Excellent contact so smaller volume is required to transfer the same amount of energy. L sat L - Potential replacement of IHX loop. => Need to determine the local heat L sub transfer coefficient and flow stability for a range of flow rates and regimes. Liquid Metal n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  14. DCHT via Xray Imaging 0 .3 0 E x p t. P = 0 .1 M p a 0 .2 5 0 .2 0 α water 0 .1 5 0 .1 0 0 .0 5 0 .0 0 0 .0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 D is ta n c e a b o v e in je c to r z [m ] 3000 2000 HTC ( w/m 2 K ) 1000 0 n i I s n n s o t 0 2.5 5 7.5 10 12.5 15 i c t s u i W t Distance from the Injector [cm] e Void [cm] O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  15. Very-High-Temperature Reactor (VHTR) Characteristics • Helium coolant • 1000°C outlet temp. • 600 MWth • Water-cracking cycle Key Benefit • Hydrogen production by water-cracking n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  16. GAS-COOLED REACTOR n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  17. Process Heat for Hydrogen Production 200 C 1000 C Aqueous-phase Iodine/Sulfuric-Acid Hydrogen Carbohydrate Thermochemical Carbon Reforming (ACR) Recycle Process H2, CO2 H H ydrogen ydrogen O O xyg xyg en en H H ydrogen ydrogen O O xyg xyg en en N N ucle ucle ar H ar H e e at at N N u u clear H clear H eat eat 1 1 1 1O O O CATALYST H H 2 2 2 2 2 2 2 L 2 2 4 4 0 0 0 0 C C 9 9 0 0 0 0 C C 1 1 O O H H 2 2 2 2 2 2 H H 2 S 2 S O O R R e e je je cte cte d d + + 2H 2H I I R R ejecte ejecte d d + + 4 4 I 2 I 2 H H e e a a t 1 t 1 S S O O 2 + H 2 + H 2 O 2 O H H ea ea t 1 t 1 0 0 0 0 C C 0 0 0 0 C C AQUEOUS CARBOHYDRATE I (Io I (Io d d in in e e ) ) 2 2 H H I I + + H H 2 S 2 S O O S S (S (S ulfu ulfu r) r) 4 4 Liquid Metal C C ircu ircu latio latio n n C C ircu ircu la la tion tion I 2 I 2 + + + + S S O O 2 + H 2 + H 2 O 2 O H H 2 O 2 O S S O O CxHy 2 2 + + I 2 I 2 H H 2 O 2 O H H 2 O 2 O LM Condensed Phase n i I s n n W W ater ater s Reforming (pyrolysis) W W a a te te r r o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  18. Micro-Nuclear Power Applications (NAE-Blanchard) Direct Conversion Micro Thermoelectric or Thermionic Generator (Electricity from radiation used to create ion-hole pair in PN Jnc) P N Self-Reciprocating Cantilever Wireless Transmitter n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend